【題目】已知、是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),是的左焦點(diǎn),.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)斜率為的直線過點(diǎn),和橢圓相交于、兩點(diǎn),,.點(diǎn)坐標(biāo)是,設(shè)的面積為,求的取值范圍.
【答案】(1)(2)
【解析】
(1)根據(jù)焦點(diǎn)坐標(biāo)和橢圓的定義求出、,進(jìn)而求出,確定出橢圓的標(biāo)準(zhǔn)方程;
(2)先聯(lián)立方程組得出根與系數(shù)關(guān)系,再結(jié)合,求出的取值范圍,利用點(diǎn)到直線的距離公式求出到的距離,根據(jù)弦長(zhǎng)公式計(jì)算出,借助面積公式求出的關(guān)于的函數(shù),利用函數(shù)性質(zhì)求出的范圍.
解:(1)由題意,是橢圓的右焦點(diǎn),
∵、關(guān)于軸對(duì)稱,、關(guān)于軸對(duì)稱,∴.
∵,∴,∴,
又是的左焦點(diǎn),∴.
∴的標(biāo)準(zhǔn)方程是.
(2)設(shè)、(),
由條件可得,直線的方程為,即.
又,,∵,∴.
由方程組得,.
∴,.
∴,解得,.
∴,解得.
∵,∴.
∵,∴點(diǎn)到直線的距離為.
又
∴面積.
∴,即面積的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時(shí),是否存在,使得成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊“新冠肺炎”,全國(guó)各地“停課不停學(xué)”,各學(xué)校都開展了在線課堂,組織學(xué)生在線學(xué)習(xí),并自主安排時(shí)間完成相應(yīng)作業(yè)為了解學(xué)生的學(xué)習(xí)效率,某在線教育平臺(tái)統(tǒng)計(jì)了部分高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)所需的平均時(shí)間,繪制了如圖所示的頻率分布直方圖.
(1)如果學(xué)生在完成在線課程后每天平均自主學(xué)習(xí)時(shí)間(完成各科作業(yè)及其他自主學(xué)習(xí))為小時(shí),估計(jì)高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時(shí)間占自主學(xué)習(xí)時(shí)間的比例(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)(結(jié)果精確到);
(2)以統(tǒng)計(jì)的頻率作為概率,估計(jì)一個(gè)高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時(shí)間不超過分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音、短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪140位市民進(jìn)行調(diào)查,其中每天玩微信超過6小時(shí)的用戶稱為“微信控”,否則稱其為“非微信控”, 調(diào)查結(jié)果統(tǒng)計(jì)如下:
微信控 | 非微信控 | 合計(jì) | |
女性 | 60 | ||
男性 | 30 | ||
合計(jì) | 70 | 140 |
(1)根據(jù)以上數(shù)據(jù),把表格中的數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
①是否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“微信控”與“性別”有關(guān);
②已知在被調(diào)查的女性“微信控”市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機(jī)抽取2人,求至少有1位老師的概率.
附表:其中
P(K2≥k) | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市據(jù)實(shí)際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報(bào)酬,第二,整村推進(jìn)方式指以貧困村為具體幫扶對(duì)象,幫扶對(duì)口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實(shí)地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識(shí),第四,移民搬遷方式,指對(duì)目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實(shí)行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項(xiàng)任務(wù),2020年初在全市貧困戶(分一般貧困戶和“五特”戶兩類)中隨機(jī)抽取了5000戶就目前的主要四種扶貧方式行了問卷調(diào)查,支持每種扶貧方式的結(jié)果如表:
調(diào)查的貧困戶 | 支持以工代賑戶數(shù) | 支持整村推進(jìn)戶數(shù) | 支持科技扶貧戶數(shù) | 支持移民搬遷戶數(shù) |
一般貧困戶 | 1200 | 1600 | 200 | |
五特戶(五保戶和特困戶) | 100 | 100 |
已知在被調(diào)查的5000戶中隨機(jī)抽取一戶支持整村推進(jìn)的概率為0.36.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶中抽取50戶進(jìn)行深入訪談,問應(yīng)在支持科技扶貧戶數(shù)中抽取多少戶?
(Ⅱ)雖然“五特”戶在全市的貧困戶所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的“五特”戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,已知,求本次調(diào)查有意義的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)響應(yīng)省政府號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖是設(shè)備改造前的樣本的頻率分布直方圖,表是設(shè)備改造后的樣本的頻數(shù)分布表.
表:設(shè)備改造后樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) |
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);
設(shè)備改造前 | 設(shè)備改造后 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(2)根據(jù)頻率分布直方圖和表 提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行登記細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件售價(jià)元;其它的合格品定為三等品,每件售價(jià)元.根據(jù)表的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓的左焦點(diǎn)和右焦點(diǎn),橢圓的離心率為是橢圓上兩點(diǎn),點(diǎn)滿足.
(1)求的方程;
(2)若點(diǎn)在圓上,點(diǎn)為坐標(biāo)原點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù).
(1)求單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明:若、是函數(shù)的兩個(gè)零點(diǎn),則.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com