如圖,已知點(diǎn)A(3,4),C(2,0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在第二象限,且|OB|=3,記∠AOC=θ.高.
(Ⅰ)求sin2θ的值;
(Ⅱ)若AB=7,求△BOC的面積.
【答案】分析:(Ⅰ)先由三角函數(shù)定義求sinθ、cosθ,再根據(jù)正弦的倍角公式求出sin2θ;
(Ⅱ)設(shè)點(diǎn)B坐標(biāo),然后列方程組解之,最后由三角形面積公式求得答案.
解答:解:(Ⅰ)∵A點(diǎn)的坐標(biāo)為(3,4),∴,
,

(Ⅱ)設(shè)B(x,y),由OB=3,AB=7得
解得,
又點(diǎn)B在第二象限,故
∴△BOC的面積
點(diǎn)評(píng):本題考查三角函數(shù)定義、正弦的二倍角公式及方程思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(3,4),C(2,0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在第二象限,且|OB|=3,記∠AOC=θ.高.
(Ⅰ)求sin2θ的值;
(Ⅱ)若AB=7,求△BOC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A(
3
,0),B(0,1),圓C是以AB為直徑的圓,直線l:
x=tcosφ
y=-1+tsinφ
,(t為參數(shù)).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)過原點(diǎn)O作直線l的垂線,垂足為H,若動(dòng)點(diǎn)M0滿足2
OM
=3
OH
,當(dāng)φ變化時(shí),求點(diǎn)M軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011—2012學(xué)年浙江省海寧中學(xué)高二期中理科數(shù)學(xué)試卷 題型:解答題

如圖,已知點(diǎn)A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點(diǎn)C在直線l:x-2y+2=0上.
(Ⅰ)求AB邊上的高CE所在直線的方程;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省嘉興市八校高二上期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題8分)如圖,已知點(diǎn)A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點(diǎn)C在直線l:x-2y+2=0上.

(Ⅰ)求AB邊上的高CE所在直線的方程;

(Ⅱ)求△ABC的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本題10分)如圖,已知點(diǎn)A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點(diǎn)C在直線lx-2y+2=0上

(Ⅰ)求AB邊上的高CE所在直線的方程

(Ⅱ)求△ABC的面積

 

查看答案和解析>>

同步練習(xí)冊(cè)答案