設點、、滿足,則取得最小值時,點B的個數(shù)是(  )

A.1個             B.2個              C.3個              D.無數(shù)個

 

【答案】

B

【解析】

試題分析:∵x2+y2-2x-2y+1≥0即(x-1)2+(y-1)2≥1,表示以(1,1)為圓心、以1為半徑的圓周及其以外的區(qū)域,當目標函數(shù)z==x+y的圖象同時經(jīng)過目標區(qū)域上的點(1,2)、(2,1)時,目標函數(shù)z==x+y取最小值3.故點B有兩個.故選B.

考點:本題考查了向量的運用.

點評:向量在幾何中的應用以及數(shù)形結合思想的應用,是對基礎知識的綜合考查,屬于基礎題

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設點A,B的坐標分別為(-a,0),(a,0).直線AM,BM相交于點M,且他們的斜率之積為k.則下列說法正確的是
(2)(3)
(2)(3)

(1)當k=
b2
a2
時,點M的軌跡是雙曲線.(其中a,b∈R+
(2)當k=-
b2
a2
時,點M的軌跡是部分橢圓.(其中a,b∈R+
(3)在(1)條件下,點p(x0,y0)(x0<0)是曲線上的點F1(-
a2+b2
,0)
,F(xiàn)2
a2+b2
,0),且|PF1|=
1
4
|PF2|,則(1)的軌跡所在的圓錐曲線的離心率取值范圍(1,
5
3
]
(4)在(2)的條件下,過點F1(-
a2-b2
,0),F(xiàn)2
a2-b2
,0).滿足
.
MF1
.
MF2
=0的點M總在曲線的內(nèi)部,則(2)的軌跡所在的圓錐曲線的離心率的取值范圍是(
2
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點P(0 , 
9
2
)
,動點A,B在橢圓
x2
18
+
y2
9
=1
上且滿足
PA
PB
,則λ的取值范圍是
[
1
5
,5]
[
1
5
,5]

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市普陀區(qū)高三年級第二次質(zhì)量調(diào)研二模理科試卷(解析版) 題型:解答題

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、的坐標,從而使得

;

(2)當時,若,

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;

解:(1)拋物線的焦點為,設

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

.

,,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質(zhì)上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

分別過作拋物線準線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數(shù),關于軸對稱”,即:

“當時,若,且點與點為偶數(shù),關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都七中高二(下)3月月考數(shù)學試卷(理科)(解析版) 題型:填空題

設點A,B的坐標分別為(-a,0),(a,0).直線AM,BM相交于點M,且他們的斜率之積為k.則下列說法正確的是   
(1)當k=時,點M的軌跡是雙曲線.(其中a,b∈R+
(2)當k=-時,點M的軌跡是部分橢圓.(其中a,b∈R+
(3)在(1)條件下,點p(x,y)(x<0)是曲線上的點F1(-,F(xiàn)2,0),且|PF1|=|PF2|,則(1)的軌跡所在的圓錐曲線的離心率取值范圍(1,]
(4)在(2)的條件下,過點F1(-,0),F(xiàn)2,0).滿足=0的點M總在曲線的內(nèi)部,則(2)的軌跡所在的圓錐曲線的離心率的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都七中高二(下)3月月考數(shù)學試卷(文科)(解析版) 題型:填空題

設點A,B的坐標分別為(-a,0),(a,0).直線AM,BM相交于點M,且他們的斜率之積為k.則下列說法正確的是   
(1)當k=時,點M的軌跡是雙曲線.(其中a,b∈R+
(2)當k=-時,點M的軌跡是部分橢圓.(其中a,b∈R+
(3)在(1)條件下,點p(x,y)(x<0)是曲線上的點F1(-,F(xiàn)2,0),且|PF1|=|PF2|,則(1)的軌跡所在的圓錐曲線的離心率取值范圍(1,]
(4)在(2)的條件下,過點F1(-,0),F(xiàn)2,0).滿足=0的點M總在曲線的內(nèi)部,則(2)的軌跡所在的圓錐曲線的離心率的取值范圍是

查看答案和解析>>

同步練習冊答案