【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

(Ⅱ)若曲線與曲線相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.

【答案】(1),(2)

【解析】試題分析】(I)方程展開后化為直角坐標(biāo)方程,利用勾股定理求得的長(zhǎng)度并求得其最大值.(II)求出直線的參數(shù)方程,代入橢圓方程,利用直線參數(shù)的幾何意義求得的值.

試題解析】

(Ⅰ)由,

即曲線的直角坐標(biāo)方程為

根據(jù)題意得

因此曲線上的動(dòng)點(diǎn)到原點(diǎn)的距離的最大值為

(Ⅱ)由(Ⅰ)知直線軸交點(diǎn)的坐標(biāo)為,曲線的參數(shù)方程為:,曲線的直角坐標(biāo)方程為

聯(lián)立得……8

,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓=1(a>b>0)上的點(diǎn)P到左,右兩焦點(diǎn)F1,F2的距離之和為2,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)右焦點(diǎn)F2的直線l交橢圓于A,B兩點(diǎn),若y軸上一點(diǎn)M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于區(qū)間[a,b](a<b),若函數(shù)同時(shí)滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),曲線的上點(diǎn) 對(duì)應(yīng)的參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線,直線的參數(shù)方程為

(1)說(shuō)明曲線是哪種曲線,并將曲線轉(zhuǎn)化為極坐標(biāo)方程;

(2)求曲線上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,⊥平面,底面為梯形,,,,的中點(diǎn)

Ⅰ)證明:∥平面;

(Ⅱ)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是指大氣中空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國(guó)標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).某城市環(huán)保局從該市市區(qū)2017年上半年每天的監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取18天的數(shù)據(jù)作為樣本,將監(jiān)測(cè)值繪制成莖葉圖如下圖所示(十位為莖,個(gè)位為葉).

(1)求這18個(gè)數(shù)據(jù)中超標(biāo)數(shù)據(jù)的平均數(shù)與方差;

(2)在空氣質(zhì)量為一級(jí)的數(shù)據(jù)中,隨機(jī)抽取2個(gè)數(shù)據(jù),求其中恰有一個(gè)為日均值小于30微克/立方米的數(shù)據(jù)的概率;

(3)以這天的日均值來(lái)估計(jì)一年的空氣質(zhì)量情況,則一年(按天計(jì)算)中約有多少天的空氣質(zhì)量超標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是 (  )

A. “若,則,或”的否定是“若,或

B. a,b是兩個(gè)命題,如果a是b的充分條件,那么的必要條件.

C. 命題“,使 得”的否定是:“,均有

D. 命題“ 若,則”的否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記圓心的軌跡為.

1)求軌跡的方程;

2)設(shè)點(diǎn)上運(yùn)動(dòng),關(guān)于原點(diǎn)對(duì)稱,且,當(dāng)的面積最小時(shí), 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案