【題目】對(duì)于區(qū)間[a,b](a<b),若函數(shù)同時(shí)滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間
(1)求函數(shù)的所有“保值”區(qū)間
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由
【答案】(1); (2).
【解析】
(1)由已知中的保值區(qū)間的定義,結(jié)合函數(shù)的值域是,可得,從而函數(shù)在區(qū)間上單調(diào),列出方程組,可求解;
(2)根據(jù)已知保值區(qū)間的定義,分函數(shù)在區(qū)間上單調(diào)遞減和函數(shù)在區(qū)間單調(diào)遞增,兩種情況分類討論,即可得到答案.
(1)因?yàn)楹瘮?shù) 的值域是,且在的最后綜合討論結(jié)果,
即可得到值域是 ,所以,所以,從而函數(shù)在區(qū)間上單調(diào)遞增,
故有,解得 .
又 ,所以.所以函數(shù)的“保值”區(qū)間為 .
(2)若函數(shù)存在“保值”區(qū)間,則有:
①若,此時(shí)函數(shù)在區(qū)間上單調(diào)遞減,
所以 ,消去得,整理得 .
因?yàn)?/span>,所以 ,即.又 ,所以.
因?yàn)?/span> ,所以.
②若 ,此時(shí)函數(shù)在區(qū)間上單調(diào)遞增,
所以,消去 得,整理得.
因?yàn)?/span>,所以,即.
又 ,所以.
因?yàn)?/span> ,所以 .
綜合①、②得,函數(shù)存在“保值”區(qū)間,此時(shí)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點(diǎn)P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(Ⅱ)若Q為曲線C上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2+S3=8.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時(shí),x的取值范圍是( )
A. (8,+∞) B. (8,9] C. [8,9] D. (0,8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1, F(x)=求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),.
(1)若在上單調(diào)遞增,求正數(shù)的最大值;
(2)若函數(shù)在內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,點(diǎn)(an , an+1)在直線y=x+2上,且首項(xiàng)a1是方程3x2﹣4x+1=0的整數(shù)解.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{an}的前n項(xiàng)和為Sn , 等比數(shù)列{bn}中,b1=a1 , b2=a2 , 數(shù)列{bn}的前n項(xiàng)和為Tn , 當(dāng)Tn≤Sn時(shí),請(qǐng)直接寫出n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù),x∈(0,+∞)取最小值時(shí)x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題:
(1)函數(shù)(x>0)在區(qū)間(0,2)上遞減;函數(shù)在區(qū)間________上遞增.當(dāng)x=_________時(shí),_______.
(2)證明:函數(shù)(x>0)在區(qū)間(O,2)上遞減.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com