【題目】已知是圓上任意一點(diǎn),,線段的垂直平分線與半徑交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)記曲線軸交于兩點(diǎn),是直線上任意一點(diǎn),直線與曲線的另一個(gè)交點(diǎn)分別為,求證:直線過(guò)定點(diǎn).

【答案】(1) ;(2)見(jiàn)解析

【解析】

(1)由已知,利用橢圓的定義計(jì)算即可;

(2)設(shè)點(diǎn),直線的方程為:,與聯(lián)立得: ,設(shè)點(diǎn) ,則, ;設(shè)點(diǎn) 同理得,;由即可得出結(jié)論.

(1)由線段的垂直平分線與半徑交于點(diǎn),得,

所以點(diǎn)的軌跡為以焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓, 故 ,

曲線的方程為

(2)由(1)得 ,設(shè)點(diǎn)的坐標(biāo)為 ,直線的方程為:

聯(lián)立整理得: ,

設(shè)點(diǎn)的坐標(biāo)為 ,則 ,故,則 ,

直線的方程為:,將聯(lián)立整理得:,

設(shè)點(diǎn)的坐標(biāo)為 ,則 ,故,則,

的斜率為

的斜率為

因?yàn)?/span> ,所以直線經(jīng)過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行文藝比賽,并通過(guò)網(wǎng)絡(luò)對(duì)比賽進(jìn)行直播.比賽現(xiàn)場(chǎng)有5名專(zhuān)家評(píng)委給每位參賽選手評(píng)分,場(chǎng)外觀眾可以通過(guò)網(wǎng)絡(luò)給每位參賽選手評(píng)分.每位選手的最終得分由專(zhuān)家評(píng)分和觀眾評(píng)分確定.某選手參與比賽后,現(xiàn)場(chǎng)專(zhuān)家評(píng)分情況如表;場(chǎng)外有數(shù)萬(wàn)名觀眾參與評(píng)分,將評(píng)分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:

專(zhuān)家

A

B

C

D

E

評(píng)分

9.6

9.5

9.6

8.9

9.7

(1)求a的值,并用頻率估計(jì)概率,估計(jì)某場(chǎng)外觀眾評(píng)分不小于9的概率;

(2)從5名專(zhuān)家中隨機(jī)選取3人,X表示評(píng)分不小于9分的人數(shù);從場(chǎng)外觀眾中隨機(jī)選取3人,用頻率估計(jì)概率,Y表示評(píng)分不小于9分的人數(shù);試求E(X)與E(Y)的值;

(3)考慮以下兩種方案來(lái)確定該選手的最終得分:方案一:用所有專(zhuān)家與觀眾的評(píng)分的平均數(shù)作為該選手的最終得分,方案二:分別計(jì)算專(zhuān)家評(píng)分的平均數(shù)和觀眾評(píng)分的平均數(shù),用作為該選手最終得分.請(qǐng)直接寫(xiě)出的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為.連接并延長(zhǎng)與橢圓相交于點(diǎn),且

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),直線分別與直線相交于點(diǎn),點(diǎn).若的面積是的面積的2倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間幾何體中,均為邊長(zhǎng)為的等邊三角形,為腰長(zhǎng)為的等腰三角形,平面平面,平面平面.

(1)試在平面內(nèi)作一條直線,使直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,直線l過(guò)點(diǎn)

1)若點(diǎn)F到直線l的距離為,求直線l的斜率;

2)設(shè)A,B為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過(guò)點(diǎn)M,求證:線段AB中點(diǎn)的橫坐標(biāo)為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是圓上任意一點(diǎn),,線段的垂直平分線與半徑交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)記曲線軸交于兩點(diǎn),是直線上任意一點(diǎn),直線,與曲線的另一個(gè)交點(diǎn)分別為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在雙曲線,)上,且雙曲線的一條漸近線的方程是

(1)求雙曲線的方程;

(2)若過(guò)點(diǎn)且斜率為的直線與雙曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍;

(3)設(shè)(2)中直線與雙曲線交于兩個(gè)不同的點(diǎn),若以線段為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是邊長(zhǎng)為2的正方形,底面,四棱錐的體積,M的中點(diǎn).

1)求異面直線所成角的余弦值;

2)求點(diǎn)B到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案