分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得f(x)=$-\frac{{\sqrt{2}}}{2}sin(2x-\frac{π}{4})+\frac{1}{2}$,利用周期公式即可得解f(x)的最小正周期;
(2)令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,即可求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
(3)由$0≤x≤\frac{π}{2}$,得$-\frac{π}{4}≤2x-\frac{π}{4}≤\frac{3π}{4}$,進(jìn)而可得$-\frac{{\sqrt{2}}}{2}≤sin(2x-\frac{π}{4})≤1$,利用正弦函數(shù)的圖象和性質(zhì)即可得解.
解答 (本題滿分為12分)
解:(1)f(x)=cos2x-sinxcosx
=$\frac{1+cos2x}{2}-\frac{1}{2}sin2x$…3分
=$-\frac{1}{2}(sin2x-cos2x)+\frac{1}{2}$
=$-\frac{{\sqrt{2}}}{2}sin(2x-\frac{π}{4})+\frac{1}{2}$,…5分
所以f(x)的最小正周期$T=\frac{2π}{2}=π$.…6分
(2)令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,k∈Z,
可得函數(shù)f(x)的單調(diào)遞增區(qū)間為:[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.…7分
(3)由$0≤x≤\frac{π}{2}$,得$-\frac{π}{4}≤2x-\frac{π}{4}≤\frac{3π}{4}$,
所以$-\frac{{\sqrt{2}}}{2}≤sin(2x-\frac{π}{4})≤1$,…8分
所以當(dāng)$2x-\frac{π}{4}=-\frac{π}{4}$,即x=0時,$f{(x)_{max}}=-\frac{{\sqrt{2}}}{2}×(-\frac{{\sqrt{2}}}{2})+\frac{1}{2}=1$; …10分
當(dāng)$2x-\frac{π}{4}=\frac{π}{2}$,即$x=\frac{3π}{8}$時,$f{(x)_{min}}=-\frac{{\sqrt{2}}}{2}×1+\frac{1}{2}=\frac{{1-\sqrt{2}}}{2}$.…12分.
點評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,周期公式,正弦函數(shù)的圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 20 | 15 |
非重度污染 | 嚴(yán)重污染 | 合計 | |
供暖季 | 22 | 8 | 30 |
非供暖季 | 63 | 7 | 70 |
合計 | 85 | 15 | 100 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $4\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{7}{8}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11π | B. | 5π | C. | $\frac{11}{3}$π | D. | 3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
X | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com