A. | $4\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
分析 判斷球心的位置,利用側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,R=2,求出OC=$\sqrt{2}$,OA=2,利用勾股定理求出AB,然后求解四邊形的面積.
解答 解:如圖所示,球心在平面BCC1B1的中心O上
取BC的中點(diǎn)D,連接AD,OD,則AD⊥BC
∵側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,R=2,
∴OC=$\sqrt{2}$,OA=2
∴AC=$\sqrt{2}$,
∴AB=$\sqrt{2+2}$=2,
∴側(cè)面ABB1A1的面積為2$•2\sqrt{2}$=4$\sqrt{2}$
故選:A.
點(diǎn)評 本題考查與球有關(guān)的幾何體的問題,考查勾股定理,空間點(diǎn)、線、面的位置關(guān)系的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{4}{9}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 7 | 14 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 17 | x | 4 | 2 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 4 |
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com