(lg2+lg5)+log23log34+lne=
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用導(dǎo)數(shù)的運(yùn)算性質(zhì)求解即可.
解答: 解:(lg2+lg5)+log23log34+lne=lg(2×5)+log24+1=1+2+1=4
故答案為:4.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的基本運(yùn)算,換底公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2xsinθ-1,x∈[-
3
2
,
1
2
]

(1)若θ=
π
6
,求f(x)的最大值和最小值.
(2)若f(x)在[-
3
2
,
1
2
]
上是單調(diào)函數(shù),且θ∈[0,2π),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線ax+by+1=0(a、b>0)過圓x2+y2+2x+2y+1=0的圓心,則
1
a
+
4
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2-2x+y2-4y+1=0內(nèi)一點(diǎn)P(2,3),則過P點(diǎn)的弦長(zhǎng)的最小值與最大值之積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax4-4ax2+b(a>0,1≤x≤2)的最大值為3,最小值為-5,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={x|x2-3x+2=0},N={y|y=2x,x∈M},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若[x]表示不超過x的最大整數(shù)(如[1.3]=1,[-2
1
4
]=-3等等),則[
1
2-
1×2
]+[
1
3-
2×3
]+[
1
4-
3×4
]+…+[
1
2004-
2003×2004
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為
 
(保留一位小數(shù)).
參考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列兩個(gè)函數(shù)為相等函數(shù)的是( 。
A、y=1與y=x0
B、y=alogax 與y=logaax(a>0,且a≠1)
C、y=
x2
與y=(
x
)
2
D、y=lg(1+x)+lg(1-x)與y=lg(1-x2

查看答案和解析>>

同步練習(xí)冊(cè)答案