【題目】如圖,在平面直角坐標(biāo)系中,已知分別是橢圓:()的左右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.若橢圓的內(nèi)接四邊形的邊的延長(zhǎng)線交于橢圓外一點(diǎn),且點(diǎn)的橫坐標(biāo)為1,記直線的斜率分別為,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求的值.
【答案】(1).(2)
【解析】
(1)求橢圓定義可知,點(diǎn)代入即可得出結(jié)果;
(2)設(shè),,因?yàn)?/span>的延長(zhǎng)線交于橢圓外一點(diǎn),且點(diǎn)的橫坐標(biāo)為1,于是有,將直線與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理及弦長(zhǎng)公式可求得,,根據(jù)已知條件化簡(jiǎn)即可得出結(jié)果.
(1),∴
點(diǎn)是橢圓上一點(diǎn),代入方程:,∴,
∴橢圓的標(biāo)準(zhǔn)方程:
(2)設(shè),
的延長(zhǎng)線交于橢圓外一點(diǎn),且點(diǎn)的橫坐標(biāo)為1,于是有 ①
②
于是:
代入②可得
同理
又,可得:
∴
法二:(1)由為橢圓的左右焦點(diǎn),為上一點(diǎn),
∴,∴,∴橢圓
將代入可得
∴橢圓的標(biāo)準(zhǔn)方程為
(2)設(shè),由斜率分別為
則直線的方程分別為
將與聯(lián)立,設(shè)
由韋達(dá)定理,
∴
同理可證
則由,得
從而
即
∴,∴
又為的內(nèi)接四邊形,∴,∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π].
(Ⅰ)若函數(shù)f(x)為偶函數(shù),求tanθ的值;
(Ⅱ)若f(x)在[﹣,1]上是單調(diào)函數(shù),求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年9月25日.阿里巴巴在杭州云棲大會(huì)上正式對(duì)外發(fā)布了含光800AI芯片,在業(yè)界標(biāo)準(zhǔn)的ResNet -50測(cè)試中,含光800推理性能達(dá)到78563lPS,比目前業(yè)界最好的AI芯片性能高4倍;能效比500 IPS/W,是第二名的3.3倍.在國(guó)內(nèi)集成電路產(chǎn)業(yè)發(fā)展中,集成電路設(shè)計(jì)產(chǎn)業(yè)始終是國(guó)內(nèi)集成電路產(chǎn)業(yè)中最具發(fā)展活力的領(lǐng)域,增長(zhǎng)也最為迅速.如圖是2014-2018年中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額(億元)及其增速(%)的統(tǒng)計(jì)圖,則下面結(jié)論中正確的是( )
A.2014-2018年,中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額逐年增加
B.2014-2017年,中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額增速逐年下降
C.2018年中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額的增長(zhǎng)率比2015年的高
D.2018年與2014年相比,中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)銷售額的增長(zhǎng)率約為110%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線E的方程為x2=2py(p>0),其焦點(diǎn)為F,過(guò)點(diǎn)M (0,4)的直線與拋物線相交于P、Q兩點(diǎn)且△OPQ為以O為直角頂點(diǎn)的直角三角形.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)點(diǎn)N為曲線E上的任意一點(diǎn),證明:以FN為直徑的圓與x軸相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年春節(jié)期間,我國(guó)高速公路繼續(xù)執(zhí)行“節(jié)假日高速公路免費(fèi)政策”某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費(fèi)點(diǎn)記錄了大年初三上午9:20~10:40這一時(shí)間段內(nèi)通過(guò)的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車通過(guò)該收費(fèi)點(diǎn),它們通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如下圖所示,其中時(shí)間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.例如:10點(diǎn)04分,記作時(shí)刻64.
(1)估計(jì)這600輛車在9:20~10:40時(shí)間段內(nèi)通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)為了對(duì)數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再?gòu)倪@10輛車中隨機(jī)抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過(guò)的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在每天通過(guò)該收費(fèi)點(diǎn)的時(shí)刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過(guò)該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過(guò)的車輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F1作圓x2+y2=a2的切線交雙曲線右支于點(diǎn)M,若tan∠F1MF2=2,又e為雙曲線的離心率,則e2的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將曲線方程,先向左平移2個(gè)單位,再向上平移2個(gè)單位,得到曲線C.
(1)點(diǎn)M(x,y)為曲線C上任意一點(diǎn),寫(xiě)出曲線C的參數(shù)方程,并求出的最大值;
(2)設(shè)直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點(diǎn)為E,F,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段EF的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面平面為等邊三角形,為的中點(diǎn).
(1)求證:平面平面;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和函數(shù),關(guān)于這兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù),下列四個(gè)結(jié)論:①當(dāng)時(shí),兩個(gè)函數(shù)圖像沒(méi)有交點(diǎn);②當(dāng)時(shí),兩個(gè)函數(shù)圖像恰有三個(gè)交點(diǎn);③當(dāng)時(shí),兩個(gè)函數(shù)圖像恰有兩個(gè)交點(diǎn);④當(dāng)時(shí),兩個(gè)函數(shù)圖像恰有四個(gè)交點(diǎn).正確結(jié)論的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com