7.如圖是高二數(shù)學(xué)選修1-2第二章“推理與證明”的知識(shí)結(jié)構(gòu)圖,已知反證法是一種間接證明方法,如果要在圖中加入反證法,則應(yīng)把它放在(  )
A.“合情推理”的下位B.“演繹推理”的下位
C.“直接證明”的下位D.“間接證明”的下位

分析 根據(jù)題意,反證法是間接證明的一種方法,放在間接證明的下位即可.

解答 解:根據(jù)題意,反證法是一種間接證明方法,
如果要在圖中加入反證法,
則應(yīng)把它放在“間接證明”的下位.
故選:D.

點(diǎn)評(píng) 本題主要考查了結(jié)構(gòu)圖的應(yīng)用問題,解題的關(guān)鍵是弄清反證法屬于間接證明,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某學(xué)校共有師生2400人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個(gè)容量為150的樣本,已知從學(xué)生中抽取的人數(shù)為135,那么該學(xué)校的教師人數(shù)是240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等比數(shù)列{an}的公比為正數(shù),且4a2a8=a42,a2=1,則a6=(  )
A.$\frac{1}{8}$B.$\frac{1}{16}$C.$\frac{1}{32}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)α、β、γ是三個(gè)不同的平面,a、b是兩條不同的直線,下列四個(gè)命題中正確的是( 。
A.若a∥α,b∥α,則a∥b
B.若a⊥α,b⊥β,a⊥b,則α⊥β
C.若a∥α,b∥β,a∥b,則α∥β
D.若a,b在平面α內(nèi)的射影互相垂直,則a⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α為銳角,且$tanα=\sqrt{2}-1$,函數(shù)$f(x)={x^2}tan2α+x•sin(2α+\frac{π}{4})$,數(shù)列{an}的首項(xiàng)${a_1}=\frac{1}{2}\;,\;{a_{n+1}}=f({a_n})$,則有( 。
A.an+1>anB.an+1≥anC.an+1<anD.an+1≤an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知三棱柱ABC-A1B1C1,所有棱長為都為2,頂點(diǎn)B1在底面ABC內(nèi)的射影是△ABC的中心,則四面體A1-ABC,B1-ABC,C1-ABC公共部分的體積為(  )
A.$\frac{2\sqrt{2}}{9}$B.$\frac{2\sqrt{3}}{9}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在如圖所示的直角三角形ABP中,已知直角邊AB=2,BP=4,C、D分別為BP、AP的中點(diǎn),將三角形DCP沿CD折起,使得面PBC⊥面ABCD,且PB=2,連接PB,PA得到四棱錐P-ABCD.
(1)求證:PA⊥BD;
(2)求二面角P-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.方程$\frac{1}{1-x}$=cos$\frac{πx}{2}$在[-2,4]內(nèi)的所有根之和為( 。
A.8B.6C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立直角坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2acosθ(a∈R),過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(其中t為參數(shù)).
(1)若曲線C和直線l有公共點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若直線l與曲線C分別交于M,N兩點(diǎn),且|PM|•|MN|•|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案