2.已知α為銳角,且$tanα=\sqrt{2}-1$,函數(shù)$f(x)={x^2}tan2α+x•sin(2α+\frac{π}{4})$,數(shù)列{an}的首項(xiàng)${a_1}=\frac{1}{2}\;,\;{a_{n+1}}=f({a_n})$,則有( 。
A.an+1>anB.an+1≥anC.an+1<anD.an+1≤an

分析 利用二倍角的正切可求得tan2α=1,α為銳角,可求得sin(2α+$\frac{π}{4}$)=1,于是可知函數(shù)f(x)的表達(dá)式,由數(shù)列{an}的首項(xiàng)${a_1}=\frac{1}{2}\;,\;{a_{n+1}}=f({a_n})$,可得
an+1=an2+an,即an+1-an=an2>0,問題得以解決.

解答 解:∵為銳角,且$tanα=\sqrt{2}-1$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2(\sqrt{2}-1)}{1-(\sqrt{2}-1)^{2}}$=1,
∴2α=$\frac{π}{4}$,
∴sin(2α+$\frac{π}{4}$)=1,
∴f(x)=x2+x,
∵數(shù)列{an}的首項(xiàng)${a_1}=\frac{1}{2}\;,\;{a_{n+1}}=f({a_n})$,
∴an+1=an2+an,
∴an+1-an=an2>0,
∴an+1>an,
故選:A.

點(diǎn)評 本題考查數(shù)列的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意正切二倍角公式和數(shù)列遞推公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)求三棱錐C1-B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.sin10°cos50°+cos10°sin50°的值等于(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列表格所示的五個(gè)散點(diǎn),原本數(shù)據(jù)完整,且利用最小二乘法求得這五個(gè)散點(diǎn)的線性回歸直線方程為$\widehaty$=0.8x-155,后因某未知原因第5組數(shù)據(jù)的y值模糊不清,此位置數(shù)據(jù)記為m(如表所示),則利用回歸方程可求得實(shí)數(shù)m的值為( 。
x196197200203204
y1367m
A.8.3B.8.2C.8.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若方程x2+$\frac{{y}^{2}}{a}$=1(a是常數(shù)),則下列結(jié)論正確的是( 。
A.任意實(shí)數(shù)a方程表示橢圓B.存在實(shí)數(shù)a方程表示橢圓
C.任意實(shí)數(shù)a方程表示雙曲線D.存在實(shí)數(shù)a方程表示拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是高二數(shù)學(xué)選修1-2第二章“推理與證明”的知識結(jié)構(gòu)圖,已知反證法是一種間接證明方法,如果要在圖中加入反證法,則應(yīng)把它放在(  )
A.“合情推理”的下位B.“演繹推理”的下位
C.“直接證明”的下位D.“間接證明”的下位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=ex(sinx-cosx),則函數(shù)f(x)的圖象x=$\frac{π}{2}$處的切線的斜率為2e${\;}^{\frac{π}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知cosα=$\frac{1}{3}$,0<α<π
(1)求sinα,tanα的值;
(2)設(shè)f(x)=$\frac{cos(π+x)sin(2π-x)}{cos(π-x)}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知⊙O:x2+y2=8,P是⊙O上在第一象限的一點(diǎn),過點(diǎn)P作⊙O的切線與x軸,y軸的正半軸圍成一個(gè)三角形,當(dāng)三角形的面積最小時(shí),切點(diǎn)為P1,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$且過點(diǎn)P1
(1)試求橢圓C的方程;
(2)過M(-1,0)作直線l與橢圓C交于A、B兩點(diǎn),且橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,△F1AF2,△F1BF2的面積分別為S1,S2,試確定|S1-S2|取值范圍.

查看答案和解析>>

同步練習(xí)冊答案