【題目】已知函數(shù),.
(1)求函數(shù)在上的最值;
(2)若對,總有成立,求實數(shù)的取值范圍.
【答案】(1),;(2).
【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,利用極值與最值之間的關(guān)系可求得函數(shù)在區(qū)間上的最大值和最小值;
(2)由變形得出,構(gòu)造函數(shù),可知函數(shù)在上為增函數(shù),可得出對任意的恒成立,結(jié)合參變量分離法得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值,進(jìn)而可求得實數(shù)的取值范圍.
(1),則,令,解得.
當(dāng)時,;當(dāng)時,.
所以,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
所以,函數(shù)在處取得極小值,亦即最小值,即.
又,,所以,.
因此,,;
(2)因為,,等價于,
令,
因為,總有成立,
所以,函數(shù)在上單調(diào)遞增.
問題化為對恒成立,即對恒成立.
令,則.
由得,.
當(dāng)時,,函數(shù)遞增,當(dāng)時,,函數(shù)遞減.
所以,,.
因此,實數(shù)的取值范圍是:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對于函數(shù)有下述四個結(jié)論:①函數(shù)在其定義域上為增函數(shù);②對于任意的,,都有成立;③有且僅有兩個零點(diǎn);④若,則在點(diǎn)處的切線與在點(diǎn)處的切線為同一直線.其中所有正確的結(jié)論有( )
A.①②③B.①③C.②③④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮廣元某景點(diǎn)設(shè)有共享電動車租車點(diǎn),共享電動車的收費(fèi)標(biāo)準(zhǔn)是每小時2元不足1小時的部分按1小時計算甲、乙兩人各租一輛電動車,若甲、乙不超過一小時還車的概率分別為;一小時以上且不超過兩小時還車的概率分別為;兩人租車時間都不會超過三小時.
Ⅰ求甲、乙兩人所付租車費(fèi)用相同的概率;
Ⅱ設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,設(shè)曲線與曲線的公共弦所在直線為l.
(1)在直角坐標(biāo)系下,求曲線與曲線的普通方程;
(2)若以坐標(biāo)原點(diǎn)為中心,直線l順時針方向旋轉(zhuǎn)后與曲線、曲線分別在第一象限交于A、B兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓:的離心率為,為橢圓上位于第一象限上的點(diǎn),為橢圓的上頂點(diǎn),直線與軸相交于點(diǎn),,的面積為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓有且只有一個公共點(diǎn),設(shè)橢圓的兩焦點(diǎn)到直線的距離分別是,,試問是否為定值?若是,求出其值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)的圖象為曲線,曲線在點(diǎn)的切線為(其中).
(Ⅰ)求實數(shù)的值;
(Ⅱ)證明:(i);
(ii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)設(shè)、為曲線上位于第一,二象限的兩個動點(diǎn),且,射線,交曲線分別于點(diǎn),.求面積的最小值,并求此時四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com