【題目】已知拋物線C的頂點在坐標(biāo)原點,焦點Fx軸上,拋物線C上一點到焦點F的距離為

求拋物線C的標(biāo)準(zhǔn)方程;

設(shè)點,過點的直線l與拋物線C相交于A,B兩點,記直線MA與直線MB的斜率分別為,,證明:為定值.

【答案】(Ⅰ);(Ⅱ)詳見解析.

【解析】

設(shè)拋物線C的標(biāo)準(zhǔn)方程為,利用拋物線的定義求出p的值,即可得出拋物線C的標(biāo)準(zhǔn)方程;設(shè)直線ll的方程為,設(shè)點、,將直線l的方程與拋物線C的方程聯(lián)立,列出韋達(dá)定理,利用斜率公式并代入韋達(dá)定理可計算出的值,從而證明結(jié)論成立.

由題意,可設(shè)拋物線C,焦點,則,解得,

因此,拋物線C的標(biāo)準(zhǔn)方程為;

證明:設(shè)過點的直線l,設(shè)點、,

聯(lián)立,消去x,得,

,由韋達(dá)定理可得,

,

因此,為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺機器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應(yīng)購買19個還是20個易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時,求曲線在點處的切線方程;

)求的單調(diào)區(qū)間;

)若在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,若的中點.

(1)證明:平面

(2)求異面直線所成角;

(3)設(shè)線段上有一點,當(dāng)與平面所成角的正弦值為時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間有5名工人其中初級工2人,中級工2人,高級工1現(xiàn)從這5名工人中隨機抽取2名.

求被抽取的2名工人都是初級工的概率;

求被抽取的2名工人中沒有中級工的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟價值是種植乙水果經(jīng)濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是,在直徑上,且

1)若米,求的長;

2)設(shè), 求該空地產(chǎn)生最大經(jīng)濟價值時種植甲種水果的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國好聲音( )》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團隊中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

導(dǎo)師轉(zhuǎn)身人數(shù)(人)

4

3

2

1

獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

(1)求選出的兩人導(dǎo)師為其轉(zhuǎn)身的人數(shù)和為4的概率;

(2)記選出的2人導(dǎo)師為其轉(zhuǎn)身的人數(shù)之和為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足當(dāng)點在圓上運動時,記點的軌跡為曲線

求曲線的方程;

已知直線與曲線交于兩點,點關(guān)于軸的對稱點為,設(shè),證明:直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:

A地區(qū):

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地區(qū):

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):

)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:

滿意度評分

低于70

70分到89

不低于90

滿意度等級

不滿意

滿意

非常滿意

記事件C“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。

查看答案和解析>>

同步練習(xí)冊答案