已知?jiǎng)又本與橢圓交于、兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明均為定值;
(2)設(shè)線段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請(qǐng)說(shuō)明理由.

(1)證明詳見解析;(2);(3)不存在點(diǎn)滿足要求.

解析試題分析:(1)先檢驗(yàn)直線斜率不存在的情況,后假設(shè)直線的方程,利用弦長(zhǎng)公式求出的長(zhǎng),利用點(diǎn)到直線的距離公式求點(diǎn)到直線的距離,根據(jù)三角形的面積公式,即可求得均為定值;(2)由(1)可求線段的中點(diǎn)的坐標(biāo),代入并利用基本不等式求最值;(3)假設(shè)存在,使得,由(1)得,從而求得點(diǎn)的坐標(biāo),可以求出直線的方程,從而得到結(jié)論.
試題解析:(1)當(dāng)直線的斜率不存在時(shí),P,Q兩點(diǎn)關(guān)于軸對(duì)稱,所以
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/86/1/ctolk.png" style="vertical-align:middle;" />在橢圓上,因此  ①
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/1b/1/1fpxa3.png" style="vertical-align:middle;" />所以
由①、②得,此時(shí)     2分
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為
由題意知,將其代入,得
其中 (*)

所以
因?yàn)辄c(diǎn)到直線的距離為
所以

,整理得,且符合(*)式
此時(shí)

綜上所述,結(jié)論成立         5分
(2)解法一:
(1)當(dāng)直線的斜率不存在時(shí),由(I)知
因此               6分
(2)當(dāng)直線的斜率存在時(shí),由(I)知

所以

所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立
綜合(1)(2)得的最大值為             9分
解法二:因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/64/0/h0wbp.png" style="vertical-align:middle;" />

所以
當(dāng)且僅當(dāng)時(shí)等號(hào)成立
因此的最大值為                   9分
(3)橢圓C上不存在三點(diǎn),使得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的焦點(diǎn)坐標(biāo)為F1(-1,0),F2(1,0),過F2垂直于長(zhǎng)軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點(diǎn)M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓CE、G兩點(diǎn),且△EGF2的周長(zhǎng)為4.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足t (O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于,兩點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線在點(diǎn)處的切線垂直相交于點(diǎn),直線與橢圓相交于兩點(diǎn).

(1)求拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)的距離;
(2)設(shè)點(diǎn)到直線的距離為,試問:是否存在直線,使得,成等比數(shù)列?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長(zhǎng)為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)的直線與橢圓C相交于A、B兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于點(diǎn).
(Ⅰ)若(點(diǎn)在第一象限),求直線的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,
(Ⅰ)求橢圓E的方程;
(Ⅱ)如圖,過點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案