【題目】下列對各事件發(fā)生的概率判斷正確的是(

A.某學(xué)生在上學(xué)的路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,那么該生在上學(xué)路上到第3個(gè)路口首次遇到紅燈的概率為

B.三人獨(dú)立地破譯一份密碼,他們能單獨(dú)譯出的概率分別為,,,假設(shè)他們破譯密碼是彼此獨(dú)立的,則此密碼被破譯的概率為

C.甲袋中有8個(gè)白球,4個(gè)紅球,乙袋中有6個(gè)白球,6個(gè)紅球,從每袋中各任取一個(gè)球,則取到同色球的概率為

D.設(shè)兩個(gè)獨(dú)立事件AB都不發(fā)生的概率為A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相同,則事件A發(fā)生的概率是

【答案】AC

【解析】

根據(jù)每個(gè)選項(xiàng)由題意進(jìn)行計(jì)算,從而進(jìn)行判斷即可

對于A,該生在第3個(gè)路口首次遇到紅燈的情況為前2個(gè)路口不是紅燈,第3個(gè)路口是紅燈,所以概率為,故A正確;

對于B,A、B、C分別表示甲、乙、丙三人能破譯出密碼,,,,“三個(gè)人都不能破譯出密碼發(fā)生的概率為,所以此密碼被破譯的概率為,B不正確;

對于C,設(shè)從甲袋中取到白球為事件A,,設(shè)從乙袋中取到白球為事件B,,故取到同色球的概率為,C正確;

對于D,易得,即,

,,又,

,∴,故D錯(cuò)誤

故選AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),其中,.

(1)若為定值,求的最大值;

(2)求證:對任意,有 ;

(3)若,,求證:對任意,直線與曲線有唯一公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題表示雙曲線,命題表示橢圓.

1)若命題p與命題q都為真命題,則pq的什么條件?

2)若為假命題,且為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B分別是橢圓的左、右端點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PAPF.

1點(diǎn)P的坐標(biāo);

2設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于MB,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的一個(gè)極值點(diǎn).

1)求函數(shù)的單調(diào)區(qū)間;

2)若當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市工業(yè)部門計(jì)劃對所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:

支持

不支持

合計(jì)

中型企業(yè)

40

小型企業(yè)

240

合計(jì)

560

已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.

(1)能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?

(2)從支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出8家企業(yè),然后從這8家企業(yè)選出2家進(jìn)行獎勵(lì),分別獎勵(lì)中型企業(yè)20萬元,小型企業(yè)10萬元.求獎勵(lì)總金額為20萬元的概率.

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校高一年級研究性學(xué)習(xí)小組共有9名學(xué)生,其中有3名男生和6名女生.在研究性學(xué)習(xí)過程中,要進(jìn)行兩次匯報(bào)活動(即開題匯報(bào)和結(jié)題匯報(bào)),每次匯報(bào)都從這9名學(xué)生中隨機(jī)選1 人作為代表發(fā)言.設(shè)每人每次被選中與否均互不影響.

1求兩次匯報(bào)活動都由小組成員甲發(fā)言的概率;

2設(shè)為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對值,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線為參數(shù),),曲線為參數(shù)),相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);

2)已知直線與圓交于兩點(diǎn),記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點(diǎn),證明:.

查看答案和解析>>

同步練習(xí)冊答案