已知兩點M(-5,0),N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列直線:①y=x+1②y=2③y=
4
3
x④y=2x其中為“B型直線”的是( 。
A、①③B、①②C、③④D、①④
考點:曲線與方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的定義,可得點P的軌跡是以M、N為焦點,2a=6的雙曲線,由此算出雙曲線的方程為
x2
9
-
y2
16
=1
.再分別判斷雙曲線與四條直線的位置關(guān)系,可得只有①②的直線上存在點P滿足B型直線的條件,由此可得答案.
解答: 解:∵點M(-5,0),N(5,0),點P使|PM|-|PN|=6,
∴點P的軌跡是以M、N為焦點,2a=6的雙曲線
可得b2=c2-a2=52-32=16,雙曲線的方程為
x2
9
-
y2
16
=1

∵雙曲線的漸近線方程為y=±
4
3
x
∴直線y=
4
3
x與雙曲線沒有公共點,
直線y=2x經(jīng)過點(0,0)斜率k>
4
3
,與雙曲線也沒有公共點
而直線y=x+1、與直線y=2都與雙曲線
x2
9
-
y2
16
=1
有交點
因此,在y=x+1與y=2上存在點P使|PM|-|PN|=6,滿足B型直線的條件
只有①②正確
故選:B.
點評:本題給出“B型直線”的定義,判斷幾條直線是否為B型直線,著重考查了雙曲線的定義標(biāo)準(zhǔn)方程、直線與雙曲線的位置關(guān)系等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的是
 

①?x∈(-∞,0),使得2x<3x成立;
②命題“am2<bm2,則a<b”的逆命題是真命題;
③若¬P是q的必要條件,則P是¬q的充分條件;
④?x∈(0,π),則sinx>cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,為偶函數(shù)的是(  )
A、f(x)=sin(
2015π
2
+x)
B、f(x)=cos(
2015π
2
+x)
C、f(x)=tan(
2015π
2
+x)
D、f(x)=sin(
2014π
2
+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出i的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)F(x)=(x2-ax+1)ex,直線l:y=2x+b,其中a,b∈R.
(1)若曲線y=F(x)在點(0,F(xiàn)(0))處的切線為l,求a,b的值;
(2)求函數(shù)F(x)的單調(diào)遞增區(qū)間;
(3)若函數(shù)F(x)在區(qū)間(0,2)上不單調(diào),求a得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
xln(x-2014)
x-2015
的零點個數(shù)為( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,BC=20,∠BAC=45°,∠ABC=75°,則AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的一個頂點是A(3,-1),∠B,∠C的平分線方程分別為x=0,y=x,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,則函數(shù)y=|x|(x-a)的圖象大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案