(2013•廣元一模)已知向量
a
、
b
 的夾角為120°,且|
a
|=1,|
b
|=2,則|2
a
-
b
|=
2
3
2
3
分析:由題意可得
a
b
=|
a
|•|
b
|•cos<
a
,
b
>=-1,再根據(jù)|2
a
-
b
|=
(2
a
-
b
)
2
=
4
a
2
-4
a
b
+
b
2
,運算求得結(jié)果.
解答:解:由題意可得
a
b
=|
a
|•|
b
|•cos<
a
b
>=1×2×cos120°=-1,
故|2
a
-
b
|=
(2
a
-
b
)
2
=
4
a
2
-4
a
b
+
b
2
=
4+4+4
=2
3

故答案為 2
3
點評:本題主要考查用兩個向量的數(shù)量積表示兩個向量的夾角,求向量的模的方法,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)給出下面四個命題:
p1:?x∈(0,∞),(
1
2
)x<(
1
3
)x
;
p2:?x∈(0,1),log
1
2
x>log
1
3
x
,
p3:?x∈(0,∞),(
1
2
)x>log
1
2
x
;
p4:?x∈(0,
1
3
),(
1
2
)x<log
1
3
x,
其中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)(x2+
2
x
)8
展開式中x4的系數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)若集合A={x|x2-2x<0},B={x|x>1},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)非空集合G關(guān)于運算?滿足:①對任意a、b∈G,都有a?b∈G:;②存在e∈G,對一切a∈G,都 有a?e=e?a=a,則稱G關(guān)于運算?為“和諧集”,現(xiàn)給出下列集合和運算:
①G={非負整數(shù)},?為整數(shù)的加法;
②G={偶數(shù)},?為整數(shù)的乘法;
③G={平面向量},?為平面向量的加法;
④G={二次三項式},?為多項式的加法.
其中關(guān)于運算?為“和諧集”的是
①③
①③
(寫出所有“和諧集”的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時,f(x)=x3-x,則函數(shù)f(x)在[0,6]上有
7
7
個零點.

查看答案和解析>>

同步練習(xí)冊答案