【題目】在國慶期間,某商場進行優(yōu)惠大酬賓活動,在活動期間,商場內(nèi)所有商品按標價的80%出售;同時,當顧客在該商場內(nèi)消費滿一定金額(元)后,還可按如下方案獲得相應(yīng)金額(元)的獎券:根據(jù)上述優(yōu)惠方案,顧客在該商場購物可以獲得雙重優(yōu)惠例如,購買標價為300元的商品,則消費金額為240元,獲得的優(yōu)惠額為:(元).設(shè)購買商品得到的,試問:

1)購買一件標價為800元的商品,顧客得到的優(yōu)惠率是多少?

2)對于標價在(元)內(nèi)的商品,要使顧客購買某商品獲得30%的優(yōu)惠率,則該商品的標價是多少?

【答案】1)購買一件標價為元的商品,顧客得到的優(yōu)惠率是2)購買標價為元的商品可以得到的優(yōu)惠率

【解析】

(1)根據(jù)題意求出優(yōu)惠額,利用題設(shè)所給公式即可得到優(yōu)惠率;

(2) 設(shè)購買標價為元的商品可以得到的優(yōu)惠率,分別討論,根據(jù)優(yōu)惠率列出等式,求出相應(yīng)的標價,即可得出滿足題意的標價.

解:(1)標價為元的商品優(yōu)惠額為:,

所以優(yōu)惠率為:.

答:購買一件標價為元的商品,顧客得到的優(yōu)惠率是.

2)設(shè)購買標價為元的商品可以得到的優(yōu)惠率.

時,

優(yōu)惠率為:,解得.

因為,所以不合題意,舍去.

時,

優(yōu)惠率為:,解得.

因為,符合題意.

答:購買標價為元的商品可以得到的優(yōu)惠率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若關(guān)于的不等式上恒成立,求的取值范圍;

(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷上是否存在極值.若存在,判斷極值的正負;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”……江南梅雨的點點滴滴都流潤著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)2009~2018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

“梅實初黃暮雨深”.請用樣本平均數(shù)估計鎮(zhèn)明年梅雨季節(jié)的降雨量;

“江南梅雨無限愁”.鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,他過去種植的甲品種楊梅,畝產(chǎn)量受降雨量的影響較大(把握超過八成).而乙品種楊梅2009~2018年的畝產(chǎn)量(/畝)與降雨量的發(fā)生頻數(shù)(年)如列聯(lián)表所示(部分數(shù)據(jù)缺失).請你幫助老李排解憂愁,他來年應(yīng)該種植哪個品種的楊梅受降雨量影響更?

(完善列聯(lián)表,并說明理由).

畝產(chǎn)量\降雨量

合計

<600

2

1

合計

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:,使等式成立是真命題.

1求實數(shù)的取值集合

2設(shè)不等式的解集為,若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個關(guān)于圓錐曲線的命題中:

①設(shè)為兩個定點,為非零常數(shù),若,則動點的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點;

④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當時,求滿足方程的值;

2)若函數(shù)是定義在R上的奇函數(shù).

①若存在,使得不等式成立,求實數(shù)的取值范圍;

②已知函數(shù)滿足,若對任意,不等式恒成立,求實數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個頂點,,,其外接圓為.對于線段上的任意一點

若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,則的半徑的取值范圍__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若對任意實數(shù),關(guān)于的方程:總有實數(shù)解,求的取值范圍;

2)若,求使關(guān)于的方程:有三個實數(shù)解的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量(單位:克)分別在,,,中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內(nèi)的概率;

(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:

方案:所有芒果以10元/千克收購;

方案:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

同步練習冊答案