【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿足 = = , = = =﹣2,動(dòng)點(diǎn)P,M滿足 =1, = ,則| |2的最大值是( 。
A.
B.
C.
D.
【答案】B
【解析】解:由 = = ,可得D為△ABC的外心, 又 = = ,可得 ( ﹣ )=0, ( ﹣ )=0,即 = =0,即有 ⊥ , ⊥ ,可得D為△ABC的垂心,
則D為△ABC的中心,即△ABC為正三角形.
由 =﹣2,即有| || |cos120°=﹣2,解得| |=2,△ABC的邊長(zhǎng)為4cos30°=2 ,
以A為坐標(biāo)原點(diǎn),AD所在直線為x軸建立直角坐標(biāo)系xOy,
可得B(3,﹣ ),C(3, ),D(2,0),由 =1,可設(shè)P(cosθ,sinθ),(0≤θ<2π),由 = ,可得M為PC的中點(diǎn),即有M( , ),則| |2=(3﹣ )2+( + )2= + = = ,當(dāng)sin(θ﹣ )=1,即θ= 時(shí),取得最大值,且為 .
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)均相等的正四棱錐P-ABCD中,O為底面正方形的重心,M,N分別為側(cè)棱PA,PB的中點(diǎn),有下列結(jié)論:
①PC∥平面OMN;
②平面PCD∥平面OMN;
③OM⊥PA;
④直線PD與直線MN所成角的大小為90°.
其中正確結(jié)論的序號(hào)是______.(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為,且點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且,求直線的斜率的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,,分別為橢圓的左、右焦點(diǎn),過(guò)的直線與相交于、兩點(diǎn),的周長(zhǎng)為.
(1)求橢圓的方程;
(2)若橢圓上存在點(diǎn),使得四邊形為平行四邊形,求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
(1)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說(shuō)明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題中:
①命題: ;
②函數(shù)f(x)=2x﹣x2有三個(gè)零點(diǎn);
③對(duì)(x,y)∈{(x,y)|4x+3y﹣10=0},則x2+y2≥4.
④已知函數(shù) ,若△ABC中,角C是鈍角,那么f(sinA)>f(cosB)
其中所有真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1) 把的圖象上每一點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,再將橫坐標(biāo)向右平移 個(gè)單位,可得圖象,求,的值;
(2) 若對(duì)任意實(shí)數(shù)和任意,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com