【題目】四棱錐與直四棱柱組合而成的幾何體中,四邊形是菱形,,,,,交于,平面,為的中點(diǎn).
(1)證明:平面;
(2)動(dòng)點(diǎn)在線段上(包括端點(diǎn)),若二面角的余弦值為,求的長(zhǎng)度.
【答案】(1)見解析(2)
【解析】
(1)在矩形中,根據(jù),得,可證,又根據(jù)為正三角形及面面垂直性質(zhì)定理可證平面,即得,由此可證明平面;
(2)以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè)出點(diǎn)Q坐標(biāo),由二面角的余弦值為,可解出Q,即可求的長(zhǎng)度.
(1)矩形中,,
,
.
四邊形是菱形,且,
,
為正三角形.
為的中點(diǎn),
.
平面,
,
,
平面.
(2)以為原點(diǎn),方向分別為軸,軸,軸正方向建立如圖所示的空間直角坐標(biāo)系,
則,
設(shè)Q,,
則,
平面的一個(gè)法向量為,
則,
取,則.
同理求得平面的一個(gè)法向量為.
代入
化簡(jiǎn)即為,
由,可得,
故與重合,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),若,求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓上三個(gè)不同的點(diǎn),若坐標(biāo)原點(diǎn)為的重心,則的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱內(nèi)接于一個(gè)半徑為的球,四邊形與均為正方形,分別是,的中點(diǎn),,則異面直線與所成角的余弦值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)我市房地產(chǎn)數(shù)據(jù)顯示,今年我市前5個(gè)月新建住宅銷售均價(jià)逐月上升,為抑制房?jī)r(jià)過快上漲,政府從6月份開始推出限價(jià)房等宏觀調(diào)控措施,6月份開始房?jī)r(jià)得到很好的抑制,房?jī)r(jià)回落.今年前10個(gè)月的房?jī)r(jià)均價(jià)如表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
均價(jià)y(萬(wàn)元/平方米) | 0.83 | 0.95 | 1.00 | 1.05 | 1.17 | 1.15 | 1.10 | 1.06 | 0.98 | 0.94 |
地產(chǎn)數(shù)據(jù)研究發(fā)現(xiàn),從1月份至5月份的各月均價(jià)y(萬(wàn)元/平方米)與x之間具有正線性相關(guān)關(guān)系,從6月份至10月份的各月均價(jià)y(萬(wàn)元/平方米)與x之間具有負(fù)線性相關(guān)關(guān)系.
(1)若政府不調(diào)控,根據(jù)前5個(gè)月的數(shù)據(jù),求y關(guān)于x的回歸直線方程,并預(yù)測(cè)12月份的房地產(chǎn)均價(jià).(精確到0.01)
(2)政府調(diào)控后,從6月份至10月份的數(shù)據(jù)可得到y與x的回歸直線方程為:.由此預(yù)測(cè)政府調(diào)控后12月份的房地產(chǎn)均價(jià).說明政府調(diào)控的必要性.(精確到0.01);;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B是拋物線C:y2=4x上兩點(diǎn),線段AB的垂直平分線與x軸有唯一的交點(diǎn)P(x0,0).
(1)求證:x0>2;
(2)若直線AB過拋物線C的焦點(diǎn)F,且|AB|=10,求|PF|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是等邊三角形,,點(diǎn)是 的中點(diǎn),連接.
(1)證明:平面平面;
(2)若,且二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,過點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),以線段AB為直徑的圓交x軸于M,N兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q.若拋物線C上存在一點(diǎn)到焦點(diǎn)F的距離等于3.則下列說法正確的是( )
A.拋物線的方程是B.拋物線的準(zhǔn)線是
C.的最小值是D.線段AB的最小值是6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com