【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADAB,ABDC,ADDCAP2,AB1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

【答案】(1)見(jiàn)解析(2) (3)

【解析】試題分析:(I)以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,求出BE,DC的方向向量,根據(jù)

,可得BEDC;(II)求出平面PBD的一個(gè)法向量,代入向量夾角公式,可得直線BE與平面PBD所成角的正弦值;()根據(jù)BFAC,求出向量的坐標(biāo),進(jìn)而求出平面FAB和平面ABP的法向量,代入向量夾角公式,可得二面角F-AB-P的余弦值

試題解析:方法一:依題意,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系(如圖所示),可得B1,00),C2,2,0),D0,20),P0,0,2).CE為棱PC的中點(diǎn),得E1,11).

1)證明:向量=(011),=(2,00),

0,

所以BE⊥DC.

2)向量=(-12,0),=(1,0,-2).

設(shè)n=(xy,z)為平面PBD的法向量,

不妨令y1,可得n=(21,1)為平面PBD的一個(gè)法向量.于是有

,

所以直線BE與平面PBD所成角的正弦值為.

3) 向量=(1,2,0),=(-2,-22),=(22,0),=(1,00).

由點(diǎn)F在棱PC上,設(shè)λ,0≤λ≤1.

λ=(12,).由BFAC,得0,因此21)+22)=0,解得λ,即.設(shè)n1=(x,y,z)為平面FAB的法向量,不妨令z1,可得n1=(0,-3,1)為平面FAB的一個(gè)法向量.取平面ABP的法向量n2=(01,0),則

cosn1n2〉==-.

易知二面角F AB P是銳角,所以其余弦值為.

方法二:(1)證明:如圖所示,取PD中點(diǎn)M,連接EM,AM.由于E,M分別為PC,PD的中點(diǎn),故EMDC,且EMDC.又由已知,可得EMABEMAB,故四邊形ABEM為平行四邊形,所以BEAM.

因?yàn)?/span>PA⊥底面ABCD,故PA⊥CD,而CD⊥DA,從而CD⊥平面PAD.因?yàn)?/span>AM平面PAD,所以CD⊥AM.BE∥AM,所以BE⊥CD.

2)連接BM,由(1)有CD⊥平面PAD,得CD⊥PD.EM∥CD,故PD⊥EM.又因?yàn)?/span>ADAP,MPD的中點(diǎn),所以PD⊥AM,可得PD⊥BE,所以PD⊥平面BEM,故平面BEM⊥平面PBD,所以直線BE在平面PBD內(nèi)的射影為直線BM.BE⊥EM,可得∠EBM為銳角,故∠EBM為直線BE與平面PBD所成的角.

依題意,有PD2,而MPD中點(diǎn),可得AM,進(jìn)而BE.故在直角三角形BEM中,tanEBM,因此sinEBM,

所以直線BE與平面PBD所成角的正弦值為.

3)如圖所示,在△PAC中,過(guò)點(diǎn)FFH∥PAAC于點(diǎn)H.因?yàn)?/span>PA⊥底面ABCD,所以FH⊥底面ABCD,從而FH⊥AC.BF⊥AC,得AC⊥平面FHB,因此AC⊥BH.在底面ABCD內(nèi),可得CH3HA,從而CF3FP.在平面PDC內(nèi),作FG∥DCPD于點(diǎn)G,于是DG3GP.由于DC∥AB,故GF∥AB,所以A,B,F,G四點(diǎn)共面.由AB⊥PA,AB⊥AD,得AB⊥平面PAD,故AB⊥AG,所以∠PAG為二面角F AB P的平面角.

PAG中,PA2,PGPDAPG45°.由余弦定理可得AG,cosPAG,所以二面角F AB P的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在離心率為的橢圓上,則該橢圓的內(nèi)接八邊形面積的最大值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體中,平面,,且,點(diǎn)的中點(diǎn).

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xax+(a1)。

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對(duì)任意x,x,xx,有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷(xiāo)售部隨機(jī)抽取了1000名銷(xiāo)售員1天的銷(xiāo)售記錄,經(jīng)統(tǒng)計(jì),其柱狀圖如圖.

該公司給出了兩種日薪方案.

方案1:沒(méi)有底薪,每銷(xiāo)售一件薪資20元;

方案2:底薪90元,每日前5件的銷(xiāo)售量沒(méi)有獎(jiǎng)勵(lì),超過(guò)5件的部分每件獎(jiǎng)勵(lì)20元.

1)分別求出兩種日薪方案中日工資y(單位:元)與銷(xiāo)售件數(shù)n的函數(shù)關(guān)系式;

2)若將頻率視為概率,回答下列問(wèn)題:

(Ⅰ)根據(jù)柱狀圖,試分別估計(jì)兩種方案的日薪X(單位:元)的數(shù)學(xué)期望及方差;

(Ⅱ)如果你要應(yīng)聘該公司的銷(xiāo)售員,結(jié)合(Ⅰ)中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,分析選擇哪種薪資方案比較合適,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=alnx1gx)=x33tx+1t0).

1)當(dāng)a時(shí),求fx)在區(qū)間[,e]上的最值;

2)討論函數(shù)fx)的單調(diào)性;

3)若gxxexm+2e為自然對(duì)數(shù)的底數(shù))對(duì)任意x[0+∞)恒成立時(shí)m的最大值為1,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零點(diǎn)分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系是________(由小到大).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)fx)=(3m22mx在(0+∞)上單調(diào)遞增,gx)=x24x+t

1)求實(shí)數(shù)m的值;

2)當(dāng)x[1,9]時(shí),記fx),gx)的值域分別為集合AB,設(shè)命題pxA,命題qxB,若命題p是命題q的充分不必要條件,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐與直四棱柱組合而成的幾何體中,四邊形是菱形,,,,平面,的中點(diǎn).

1)證明:平面;

2)動(dòng)點(diǎn)在線段上(包括端點(diǎn)),若二面角的余弦值為,求的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案