17.已知過(guò)橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)F1,F(xiàn)2的兩條互相垂直的直線的交點(diǎn)在橢圓內(nèi)部(不包括邊界)則此橢圓的離心率的取值范圍是(0,$\frac{\sqrt{2}}{2}$).

分析 由題意可知:O為圓心以F1F2為直徑的圓與橢圓沒(méi)有交點(diǎn),即|OP|=c<b,則c2<b2=a2-c2,即a2>2c2,求得a>$\sqrt{2}$c,e=$\frac{c}{a}$<$\frac{\sqrt{2}}{2}$,由0<e<1.即可求得橢圓的離心率的取值范圍.

解答 解:由題意可知橢圓內(nèi)存在點(diǎn)P使得直線PF1與直線PF2垂直,
∴O為圓心以F1F2為直徑的圓與橢圓沒(méi)有交點(diǎn),
∴|OP|=c<b,
∴c2<b2=a2-c2,即a2>2c2
∴a>$\sqrt{2}$c,
∴e=$\frac{c}{a}$<$\frac{\sqrt{2}}{2}$,
由0<e<1.
∴0<e<$\frac{\sqrt{2}}{2}$,
故答案為:(0,$\frac{\sqrt{2}}{2}$).

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單幾何性質(zhì),考查橢圓離心率的求法,考查學(xué)生分析問(wèn)題及解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)是定義在R上的偶函數(shù),若方程f(x+1)=|x2+2x-3|的實(shí)根分別為x1,x2,…,xn,則x1+x2+…+xn=( 。
A.nB.-nC.-2nD.-3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow a=(2,-1),\overrightarrow b=(0,1)$,則$|\overrightarrow a+2\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.定積分${∫}_{0}^{1}$2e2xdx=e2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:|x+1|>2,命題q:5x-6>x2,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果函數(shù)f(x)是定義在(-3,3)上的奇函數(shù),當(dāng)0<x<3時(shí),函數(shù)f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是( 。
A.(-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3)B.(-$\frac{π}{2}$,-1)∪(0,1)∪($\frac{π}{2}$,3)C.(-3,-1)∪(0,1)∪(1,3)D.(-3,-$\frac{π}{2}$)∪(0,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=f(x)為奇函數(shù),則它的圖象必經(jīng)過(guò)點(diǎn)( 。
A.(0,0)B.(-a,-f(a))C.(a,f(-a))D.(-a,-f(-a))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若無(wú)窮等差數(shù)列{an}的首項(xiàng)a1<0,公差d>0,{an}的前n項(xiàng)和為Sn,則以下結(jié)論中一定正確的是(  )
A.Sn單調(diào)遞增B.Sn單調(diào)遞減C.Sn有最小值D.Sn有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.0B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案