【題目】如圖,設(shè)拋物線C1:的準(zhǔn)線1x軸交于橢圓C2的右焦點F2,F1C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,MC1上一動點,且在P,Q之間移動.

1)當(dāng)取最小值時,求C1C2的方程;

2)若PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

【答案】(1),;

(2)面積最大值為,此時.

【解析】

1)由題意,,得到,,根據(jù)取最小值時,即可求得拋物線和橢圓的方程;

2)用表示出橢圓的方程,聯(lián)立方程組得出點的坐標(biāo),計算出的三邊關(guān)于的式子,從而確定實數(shù)的值,求出得距離和到直線的距離,利用二次函數(shù)的性質(zhì),求得面積取最大值,即可求解.

1)由題意,拋物線的準(zhǔn)線方程為,

橢圓的右焦點,所以

又由,則,所以取最小值時,

所以拋物線C1:

又由,,所以橢圓C2的方程為

2)因為,則,,

設(shè)橢圓的標(biāo)準(zhǔn)方程為,

聯(lián)立方程組,得,

所以(舍去),代入拋物線方程得,即,于是,,,

的邊長恰好是三個連續(xù)的自然數(shù),所以,

此時拋物線方程為,,

則直線PQ的方很為,聯(lián)立,得(舍去),于是.所以,

設(shè)到直線的距離為,則,

當(dāng)時,,

所以的面積最大值為,

此時MP.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,邊上異于端點的動點,于點,將矩形沿折疊至處,使面.分別為的中點.

1)證明://面;

2)設(shè),當(dāng)x為何值時,四面體的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)函數(shù)處的切線過點,求的方程;

2)若且函數(shù)有兩個零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點處的切線方程;

2)求的單調(diào)區(qū)間;

3)若對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)上的兩個動點,焦點為F.線段的中點為,且點到拋物線的焦點F的距離之和為8

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若線段的垂直平分線與x軸交于點C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個整點,其中.

(Ⅰ)當(dāng),從上面的個整點中任取兩個不同的整點,求的所有可能值;

(Ⅱ)從上面個整點中任取個不同的整點,.

i)證明:存在互不相同的四個整點,滿足,;

ii)證明:存在互不相同的四個整點,滿足,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種籠具由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.

1)求這種籠具的體積(結(jié)果精確到0.1);

2)現(xiàn)要使用一種紗網(wǎng)材料制作50籠具,該材料的造價為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,的面積.將,稱為基尼系數(shù).對于下列說法:

越小,則國民分配越公平;

②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有

③若某國家某年的勞倫茨曲線近似為,則

其中正確的是:(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,在以O為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為

1)設(shè)曲線C與直線l的交點為AB,求弦AB的中點P的直角坐標(biāo);

2)動點Q在曲線C上,在(1)的條件下,試求△OPQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案