3.在△ABC中,角A,B,C所對的邊分別為a,b,c,且(a+b+c)(b+c-a)=bc,則A=( 。
A.30°B.60°C.120°D.150°

分析 首先對(a+b+c)•(b+c-a)=bc化簡整理得b2+c2+-a2=-bc代入余弦定理中即可求得cosA,進(jìn)而求得答案.

解答 解:(a+b+c)•(b+c-a)=(b+c)2-a2=b2+c2+2bc-a2=bc
∴b2+c2+-a2=-bc
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,
∴∠A=120°.
故選:C.

點(diǎn)評(píng) 本題主要考查了余弦定理的應(yīng)用.解題的關(guān)鍵是求得b2+c2+-a2與bc的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平行四邊形OABC中,點(diǎn)C(1,3),A(3,0),過點(diǎn)C作CD⊥AB于D.
(1)求CD所在直線方程.
(2)求線段CD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(-3)=0,則(x2-2x-3)•f(x)≥0的解集是(  )
A.{x|-1≤x≤3或x≤-3}B.{x|-1≤x≤0或x≤-3或x=3}
C.{x|-3≤x≤-1或x≥3}D.{x|-1≤x≤0或x≥3或x=-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.宜賓三中舉行的電腦知識(shí)競賽中,將高二年級(jí)兩個(gè)班參賽的學(xué)生成績(得分均為整數(shù))進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、三、四、五小組的頻率分別是0.30,0.15,0.10,0.05.則第二小組的小長方形的高為( 。
A.0.04B.0.40C.0.10D.0.025

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x(ex+ae-x)(x∈R),若函數(shù)f(x)是偶函數(shù),記a=m,若函數(shù)f(x)為奇函數(shù),記a=n,則m+2n的值為( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對一切實(shí)數(shù)x,函數(shù)f(x)滿足:xf(x)=2f(1-x)+1,則f(5)=$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面四邊形ABCD中,∠A=∠B=60°,∠C=75°,BC=2,則AB的取值范圍是(2,1+$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A、B、C為函數(shù)y=logax(0<a<1)的圖象上的三點(diǎn),它們的橫坐標(biāo)分別是t,t+2,t+4(t>1).
(1)設(shè)△ABC的面積為S,求S=f(t);
(2)求函數(shù)S=f(t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于集合下列正確的是( 。
A.0∉NB.∅∈RC.0∉N*D.$\frac{1}{2}$∈Z

查看答案和解析>>

同步練習(xí)冊答案