【題目】已知集合…,…,,對(duì)于…,,B=(…,,定義A與B的差為
…,A與B之間的距離為.
(Ⅰ)若,求;
(Ⅱ)證明:對(duì)任意,有
(i),且;
(ii)三個(gè)數(shù)中至少有一個(gè)是偶數(shù);
(Ⅲ)對(duì)于……,再定義一種A與B之間的運(yùn)算,并寫(xiě)出兩條該運(yùn)算滿足的性質(zhì)(不需證明).
【答案】(1)(2)見(jiàn)解析(3)見(jiàn)解析
【解析】分析:(Ⅰ)因?yàn)?/span>,所以;(Ⅱ)(i)設(shè)………,因?yàn)?/span>,故,…,n),分兩種情況討論即可的結(jié)果;(ii)設(shè)…,…,…,記
記…,由(i)可知,,,
即…,先推導(dǎo)出不可能全為奇數(shù),即三個(gè)數(shù)中至少有一個(gè)是偶數(shù),從而可得結(jié)論;(Ⅲ)定義=,…,則.
詳解:(Ⅰ)因?yàn)?/span>,所以.
(Ⅱ)(i)設(shè)………,
因?yàn)?/span>,故,…,n),
即….
又…,n.
當(dāng)時(shí),有;
當(dāng)時(shí),有;
故
(ii)設(shè)…,…,…,
記
記…,由(i)可知:
,
,
,
即中1的個(gè)數(shù)為k,中1的個(gè)數(shù)為,…
設(shè)t是使成立的i的個(gè)數(shù),則有,
由此可知,不可能全為奇數(shù),即三個(gè)數(shù)中至少有一個(gè)是偶數(shù).
(Ⅲ)如可定義A·B=,…,則A·B=B·A,(A·B)·C=A·(B·C).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在上的一點(diǎn)的正北方向的處建一倉(cāng)庫(kù),并在公路同側(cè)建造一個(gè)正方形無(wú)頂中轉(zhuǎn)站(其中邊在上),現(xiàn)從倉(cāng)庫(kù)向和中轉(zhuǎn)站分別修兩條道路,,已知,且,設(shè),.
(1)求關(guān)于的函數(shù)解析式;
(2)如果中轉(zhuǎn)站四周?chē)鷫Γ凑叫沃荛L(zhǎng))造價(jià)為萬(wàn)元,兩條道路造價(jià)為萬(wàn)元,問(wèn):取何值時(shí),該公司建中轉(zhuǎn)圍墻和兩條道路總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足 ,它的前項(xiàng)和為,且,.
(Ⅰ)求;
(Ⅱ)已知等比數(shù)列滿足, ,設(shè)數(shù)列的前項(xiàng)和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩艘輪船都要?吭谕粋(gè)泊位,它們可能在一晝夜的任意時(shí)刻到達(dá).甲、乙兩船?坎次坏臅r(shí)間分別為4小時(shí)與2小時(shí),求有一艘船停靠泊位時(shí)必需等待一段時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 的方程為 ,直線 的方程為 ,點(diǎn) 在直線 上,過(guò)點(diǎn) 作圓 的切線 ,切點(diǎn)為 .
(1)若點(diǎn) 的坐標(biāo)為 ,求切線 的方程;
(2)求四邊形 面積的最小值;
(3)求證:經(jīng)過(guò) 三點(diǎn)的圓必過(guò)定點(diǎn),并求出所有定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)點(diǎn)A ( ,-2),B(-2 ,1);
(2)與橢圓 有相同焦點(diǎn)且經(jīng)過(guò)點(diǎn)M( ,1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種商品,在某周內(nèi)獲純利(元)與該周每天銷售這種商品數(shù)之間的一組數(shù)據(jù)關(guān)系如表:
(I)畫(huà)出散點(diǎn)圖;
(II)求純利與每天銷售件數(shù)之間的回歸直線方程;
(III)估計(jì)當(dāng)每天銷售的件數(shù)為12件時(shí),每周內(nèi)獲得的純利為多少?
附注:
,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題 “存在 ”,命題 :“曲線 表示焦點(diǎn)在 軸上的橢圓”,命題 “曲線 表示雙曲線”
(1)若“ 且 ”是真命題,求實(shí)數(shù) 的取值范圍;
(2)若 是 的必要不充分條件,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com