【題目】已知函數(shù)f(x)= ,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:∵函數(shù)f(x)= ,
∴當(dāng)﹣1<x≤1時, <f(x)≤2,
當(dāng)1<x≤3時,﹣1<x﹣2≤1,f(x)=f(x﹣2)+1=2x﹣2+1∈( ,3];
設(shè)h(x)=f(f(x)),
當(dāng)﹣1<x≤0時,h(x)= , <h(x)≤2,
∴g(x)=h(x)﹣2有一個零點x=0;
當(dāng)0<x≤1時,h(x)= , <h(x)≤2,
∴g(x)=h(x)﹣2有一個零點x=1;
當(dāng)1<x≤3時,h(x)= +1
+1<h(x)≤3g(x)有一個零點;
綜上,函數(shù)g(x)在區(qū)間(﹣1,3]上有3個零點.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,其左頂點A在圓O:x2+y2=16上. (Ⅰ)求橢圓W的方程;
(Ⅱ)若點P為橢圓W上不同于點A的點,直線AP與圓O的另一個交點為Q.是否存在點P,使得 ?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.函數(shù)f(x)=ex+x2+x+1與g(x)的圖象關(guān)于直線2x﹣y﹣3=0對稱,P,Q分別是函數(shù)f(x),g(x)圖象上的動點,則|PQ|的最小值為__
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)滿足條件:
(1)當(dāng)時,且;
(2)當(dāng)時,;
(3)在R上的最小值為0.
求最大的m(m>1),使得存在,只要,就有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC中,角A,B,C所對的邊分別為a,b,c,則“∠C>90°”的一個充分非必要條件是( )
A.sin2A+sin2B<sin2C
B.sinA= ,(A為銳角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左、右焦點為,右頂點為,上頂點為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過點且不垂直于坐標(biāo)軸的直線與橢圓交于兩點,已知點,當(dāng)時,求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}定義為a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)當(dāng)a>0時,定義數(shù)列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整數(shù)i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一組(i,j),如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com