【題目】如圖,是的直徑,點B是上與A,C不重合的動點,平面.
(1)當(dāng)點B在什么位置時,平面平面,并證明之;
(2)請判斷,當(dāng)點B在上運動時,會不會使得,若存在這樣的點B,請確定點B的位置,若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018海南高三階段性測試(二模)】如圖,在直三棱柱中, , ,點為的中點,點為上一動點.
(I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.
(II)若點為的中點且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
當(dāng)時,判斷直線與曲線的位置關(guān)系;
若直線與曲線相切于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將方格紙中每個小方格染三種顏色之一,使得每種顏色的小方格的個數(shù)相等.若相鄰兩個小方格的顏色不同,稱他們的公共邊為“分割邊”,則分割邊條數(shù)的最小值為( )
A.33B.56C.64D.78
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1,F(xiàn)2,離心率,且橢圓的短軸長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線l1,l2過右焦點F2,且它們的斜率乘積為﹣1,設(shè)l1,l2分別與橢圓交于點A,B和C,D.①求AB+CD的值;②設(shè)AB的中點M,CD的中點為N,求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過(2,5),(﹣2,1)兩點,并且圓心在直線yx上.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求圓上的點到直線3x﹣4y+23=0的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次考試中500名學(xué)生的物理(滿分為150分)成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如圖所示.
(Ⅰ)如果成績大于135分為特別優(yōu)秀,那么本次考試中的物理、數(shù)學(xué)特別優(yōu)秀的大約各有多少人?
(Ⅱ)如果物理和數(shù)學(xué)兩科都特別優(yōu)秀的共有4人,是否有99.9%的把握認(rèn)為物理特別優(yōu)秀的學(xué)生,數(shù)學(xué)也特別優(yōu)秀?
附:①若,則
②表及公式:
0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)對任意的實數(shù),恒有成立,求實數(shù)的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)實數(shù)取最小值時,討論函數(shù)在時的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項的和為且數(shù)列滿足且對任意正整數(shù)都有成等比數(shù)列.
(1)求數(shù)列的通項公式.
(2)證明數(shù)列為等差數(shù)列.
(3)令問是否存在正整數(shù)使得成等比數(shù)列?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com