【題目】已知函數(shù)f(x)=sin(ωx﹣φ), 的圖象經(jīng)過點(diǎn) ,且相鄰兩條對稱軸的距離為 . (Ⅰ)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C的對邊,若 ,求∠A的大。

【答案】解:(Ⅰ)由相鄰兩條對稱軸的距離為 ,可得其周期為 ,∴ω=2. 則f(x)=sin(2x﹣φ)
∵圖象過點(diǎn) ,且 ,坐標(biāo)帶入:
得: =sin(2× ﹣φ),即cosφ=
∴φ=
那么:函數(shù)f(x)的解析式為:f(x)=sin(2x﹣
,k∈Z.
可得:
∴x在[0,π]上增區(qū)間為
(Ⅱ)由 ,可得 ,
,

由于0<A<π,

那么:

【解析】(Ⅰ)根據(jù)相鄰兩條對稱軸的距離為 ,可得周期,從而求出ω,圖象過點(diǎn) ,帶入求出φ,即可求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間.(Ⅱ)根據(jù) ,利用三角函數(shù)公式化簡可得∠A的大小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司設(shè)計(jì)如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的AB,DC)和兩個(gè)半圓構(gòu)成,設(shè)AB=xm,且x≥80.

(1)若內(nèi)圈周長為400m,則x取何值時(shí),矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為 m2 , 則x取何值時(shí),內(nèi)圈周長最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里(
A.156里
B.84里
C.66里
D.42里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4sin (ω>0). (Ⅰ)若ω=3,求f(x)在區(qū)間 上的最小值;
(Ⅱ)若函數(shù)f(x)的圖象如圖所示,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知F1、F2是橢圓G: 的左、右焦點(diǎn),直線l:y=k(x+1)經(jīng)過左焦點(diǎn)F1 , 且與橢圓G交于A、B兩點(diǎn),△ABF2的周長為
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得△ABF2為等腰直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形ABCD為等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四邊形CDEF為正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若點(diǎn)G是棱AB的中點(diǎn),求證:EG∥平面BDF;
(Ⅱ)求直線AE與平面BDF所成角的正弦值;
(Ⅲ)在線段FC上是否存在點(diǎn)H,使平面BDF⊥平面HAD?若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)隨機(jī)選取了40名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.
(Ⅰ)求a的值及樣本中男生身高在[185,195](單位:cm)的人數(shù);
(Ⅱ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過樣本估計(jì)該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在[145,155)和[185,195](單位:cm)內(nèi)的男生中任選兩人,求這兩人的身高都不低于185cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.01則輸出n的值(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊半徑為2的半圓形紙板切割成等腰梯形的形狀,下底AB是半圓的直徑,上底CD的端點(diǎn)在半圓上,則所得梯形的最大面積為

查看答案和解析>>

同步練習(xí)冊答案