【題目】如圖,在四棱錐中,底面是直角梯形,,,,側面底面,且,為棱上一點,且.
(1)求證:平面;
(2)若二面角的余弦值為,求四棱錐的體積.
【答案】(1)證明見解析;(2)8.
【解析】
(1)連接,交于點,連接,可證,從而可證結論.
(2)取的中點,連接,,可得,由平面平面,則平面,則以為原點、的方向為軸正方向、的方向為軸正方向、的方向為軸正方向建立空間直角坐標系,設,用向量方法根據(jù)二面角的余弦值為,求出的值,從而求出體積.
(1)連接,交于點,連接,如圖.
∵,
∴與相似,∴.
∵,∴.
∵平面,平面,
∴平面.
(2)取的中點,連接,
∵,∴.
∵平面平面,交線為,∴平面,
∴,.
以為原點、的方向為軸正方向、的方向為軸正方向、的方向為軸正方向建立空間直角坐標系,
則,,.如圖
設,則,,,
平面的一個法向量.
設平面的法向量,則
取,
由,解得.
∴.
科目:高中數(shù)學 來源: 題型:
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設計師單獨設計出來的玩偶.由于盒子上沒有標注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有、、三種樣式玩偶的概率相同.某同學已經(jīng)有了樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點為調查該款盲盒的受歡迎程度,隨機發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計,有的人購買了該款盲盒,在這些購買者當中,女生占;而在未購買者當中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認為購買該款盲盒與性別有關?
女生 | 男生 | 總計 | |
購買 | |||
未購買 | |||
總計 |
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點負責人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進行檢驗.
①請用4、5、6周的數(shù)據(jù)求出關于的線性回歸方程;
(注:,)
②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】π為圓周率,e=2.718 28…為自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)= 的單調區(qū)間;
(2) 求e3,3e,eπ,πe,3π,π3這6個數(shù)中的最大數(shù)與最小數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)求證:平面.
(2)點在線段上運動,設平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點.
(1)證明:AE⊥PD;
(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面內(nèi)兩個定點和點,是動點,且直線,的斜率乘積為常數(shù),設點的軌跡為.
① 存在常數(shù),使上所有點到兩點距離之和為定值;
② 存在常數(shù),使上所有點到兩點距離之和為定值;
③ 不存在常數(shù),使上所有點到兩點距離差的絕對值為定值;
④ 不存在常數(shù),使上所有點到兩點距離差的絕對值為定值.
其中正確的命題是_______________.(填出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:過點M(2,3),點A為其左頂點,且AM的斜率為 ,
(1)求C的方程;
(2)點N為橢圓上任意一點,求△AMN的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記
(1)求實數(shù),的值;
(2)若不等式成立,求實數(shù)的取值范圍;
(3)定義在上的函數(shù),設,將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù).試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由(表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com