19.已知函數(shù)f(x)=$(\frac{1}{2}-\frac{1}{{{2^x}+1}})$•x,則方程f(x-1)=f(x2-3x+2)的所有實(shí)根構(gòu)成的集合的非空子集個數(shù)為7.

分析 由題意可判斷函數(shù)f(x)是R上的偶函數(shù),且可判斷在[0,+∞)上是增函數(shù);從而可得x-1=x2-2x+1或x-1=-(x2-2x+1),從而解得,即可求出子集的個數(shù).

解答 解:∵f(x)=$(\frac{1}{2}-\frac{1}{{{2^x}+1}})$•x
∴f(-x)=(-x)($\frac{1}{2}$-$\frac{1}{{2}^{-x}+1}$)
=x($\frac{1}{{2}^{-x}+1}$-$\frac{1}{2}$)=$(\frac{1}{2}-\frac{1}{{{2^x}+1}})$•x=f(x),
∴函數(shù)f(x)是R上的偶函數(shù),
∵f′(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$+$\frac{x•{2}^{x}•ln2}{({2}^{x}+1)}$,
∴當(dāng)x≥0時,f′(x)≥0;
故函數(shù)f(x)在[0,+∞)上是增函數(shù);
∵f(x-1)=f(x2-2x+1),
∴x-1=x2-2x+1或x-1=-(x2-2x+1),
∴x=1或x=2或x=0,
∴所有實(shí)根構(gòu)成的集合的非空子集個數(shù)為23-1=7
故答案為:7

點(diǎn)評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的性質(zhì)的判斷與應(yīng)用,關(guān)鍵是判斷函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知α,β均為銳角,cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,則角β為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.把數(shù)列{$\frac{1}{2n-1}$}的所有數(shù)按照從大到小的原則寫成如圖:第k行有2k-1個數(shù),第t行的第s個數(shù)(從左數(shù)起)記為A(t,s),則A(6,10)=$\frac{1}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知全集U=R,集合A={x|x(x-2)<0},集合B={x|x2-1<0}.
(1)求集合A∩B;
(2)求集合A∩∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.將一根長12cm的鐵絲,平均截成六段,焊接成一個正四面體的框架,在其中放置一個球,當(dāng)該球體積最大時,則該球的體積為$\frac{\sqrt{2}π}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)xOy系中,直線l經(jīng)過點(diǎn)P(-1,0),其傾斜角為α,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xoy取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+1=0.
(l)寫出直線l的參數(shù)方程,若直線l與曲線C有公共點(diǎn),求α的取值范圍;
(2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-2|
(1)求證:f(m)+f(n)≥|m-n|
(2)若不等式f(2x)+f(-x)≥a 恒成立,求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,若直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=3$\sqrt{2}$.
(1)把直線l的極坐標(biāo)方程化為直角坐標(biāo)系方程;
(2)已知P為曲線$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$,(θ為參數(shù))上一點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{AB}$對應(yīng)的復(fù)數(shù)為1+i,若點(diǎn)A對應(yīng)的復(fù)數(shù)為1+3i,則點(diǎn)B對應(yīng)的復(fù)數(shù)為2+4i.

查看答案和解析>>

同步練習(xí)冊答案