17.已知點A(4,0),拋物線C:x2=12y的焦點為F,射線FA與拋物線C相交于點M,與其準(zhǔn)線相交于點N,則|FM|:|MN|=3:5.

分析 如圖所示,過點M作準(zhǔn)線的垂線,設(shè)垂足為P,準(zhǔn)線FA的斜率為-$\frac{3}{4}$.利用|FM|:|MN|=|MP|:|MN|即可得出.

解答 解:如圖所示,拋物線C:x2=12y的焦點為F(3,0),
過點M作準(zhǔn)線的垂線,設(shè)垂足為P,準(zhǔn)線FA的斜率為-$\frac{3}{4}$.
利用拋物線的定義可得:|FM|=|MP|.
|FM|:|MN|=|MP|:|MN|=3:5.
故答案為:3:5.

點評 本題考查了拋物線的定義標(biāo)準(zhǔn)方程及其性質(zhì)、弦長公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,$BC=1,sinC=\sqrt{2}sinB$,若x=A是函數(shù)f(x)=sinx+cosx的一個極值點,則△ABC的面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)求導(dǎo)數(shù),正確的個數(shù)是( 。
①(e2x)′=e2x
②[(x2+3)8]′=8(x2+3)•2x
③(ln2x)′=$\frac{2}{x}$;
④(a2x)′=2a2x-1
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin2(π+α)+cos(2π+α)cos(-α)-1的值是( 。
A.1B.2sin2αC.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x>0\\ cosx,x≤0\end{array}$,則下列結(jié)論正確的是( 。
A.f(x)是偶函數(shù)B.f(x)是增函數(shù)C.f(x)是周期函數(shù)D.f(x)的值域為[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\frac{{\sqrt{3}tan{{12}°}-3}}{{4{{cos}^2}{{12}°}sin{{12}°}-2sin{{12}°}}}$等于$-4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在△ABC中,已知∠BAC=$\frac{π}{3}$,AB=2,AC=3,D在線段BC上.
(Ⅰ)若$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,求|${\overrightarrow{AD}}$|
(Ⅱ)若$\overrightarrow{DC}$=$\overrightarrow{BD}$,$\overrightarrow{AE}$=3$\overrightarrow{ED}$,用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{BE}$,并求|${\overrightarrow{BE}}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)f(x)=ax2+6x-4lnx在點M(1,f(1))處的切線方程為y=b.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若對于任意的x∈[1,5],恒有f(x)≤3ln($\frac{{e}^{2}}{m}$)+ln(e2m)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示的鐵片由兩部分組成,半徑為1的半圓O及等腰直角△EFH,其中FE⊥FH.現(xiàn)將鐵片裁剪成盡可能大的梯形鐵片ABCD(不計損耗),AD∥BC,且點A,B在弧$\widehat{EF}$上.點C,D在斜邊EH上.設(shè)∠AOE=θ.
(1)求梯形鐵片ABCD的面積S關(guān)于θ的函數(shù)關(guān)系式;
(2)試確定θ的值,使得梯形鐵片ABCD的面積S最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案