【題目】如圖,在四棱錐P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=AC,E是PD的中點(diǎn),求證:
(1)PB∥平面ACE;
(2)平面PAC⊥平面ABCD.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)連結(jié)BD,交AC于點(diǎn)O,連OE,根據(jù)底面圖像的特點(diǎn)得到O為BD的中點(diǎn)又E是PD的中點(diǎn),故OE∥PB,進(jìn)而得到線面平行;(2)根據(jù)底面ABCD是菱形,∠ABC=60°,所以為正三角形,通過(guò)邊長(zhǎng)關(guān)系得到PB =AB =PA,從而,PA⊥AB,同理可證PA⊥AD進(jìn)而得到PA⊥平面ABCD,再由面面垂直的判定得到平面PAC⊥平面ABCD.
(1)連結(jié)BD,交AC于點(diǎn)O,連OE.
因?yàn)榈酌?/span>ABCD是菱形,
所以點(diǎn)O為BD的中點(diǎn).
又E是PD的中點(diǎn),故OE∥PB.
又因?yàn)?/span>OE平面ACE,PB平面ACE.
(2)因?yàn)榈酌?/span>ABCD是菱形,∠ABC=60°,
所以為正三角形,從而AB = AC.
又PB =AC,PA = AC,
所以PB =AB =PA.
從而,PA⊥AB.
同理可證PA⊥AD,
又因?yàn)?/span>ABAD = A,且AB,AD平面ABCD,
所以PA⊥平面ABCD.
因?yàn)?/span>PA平面PAC,所平面PAC⊥平面ABCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有男性職工64名,一次體檢后,將他們的體重(單位:kg)分組為:,,,,,繪制出頻率分布直方圖如圖,圖中從左到右的前3個(gè)小組的頻率之比為.
(1)求這64名男職工中,體重小于60kg的人數(shù);
(2)從體重在kg范圍的男職工中用分層抽樣的方法選取6名,再?gòu)倪@6名男職工中隨機(jī)選取2名,記“至少有一名男職工體重大于65kg”為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形,,將沿折起來(lái),使平面平面.如圖,設(shè)為的中點(diǎn),,的中點(diǎn)為.
()求證:平面.
()求平面與平面所成銳二面角的余弦值.
()在線段上是否存在點(diǎn),使得平面,若存在確定點(diǎn)的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=AC,AE=AB,BD,CE相交于點(diǎn)F.
(Ⅰ)求證:A,E,F,D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長(zhǎng)為2,求A,E,F,D所在圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第23屆冬季奧運(yùn)會(huì)于2018年2月9日至2月25日在韓國(guó)平昌舉行,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會(huì)對(duì)全校教職工在冬季奧運(yùn)會(huì)期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如下頻數(shù)分布表:
收看時(shí)間(單位:小時(shí)) | [0,1) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) |
收看人數(shù) | 14 | 30 | 16 | 28 | 20 | 12 |
(1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“體育達(dá)人”,否則定義為“非體育達(dá)人”,請(qǐng)根據(jù)頻數(shù)分布表補(bǔ)全列聯(lián)表:
男 | 女 | 合計(jì) | |
體育達(dá)人 | 40 | ||
非體育達(dá)人 | 30 | ||
合計(jì) |
并判斷能否有90%的把握認(rèn)為該校教職工是否為“體育達(dá)人”與“性別”有關(guān);
(2)在全!绑w育達(dá)人”中按性別分層抽樣抽取6名,再?gòu)倪@6名“體育達(dá)人”中選取2名作冬奧會(huì)知識(shí)講座.求抽取的這兩人恰好是一男一女的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為橢圓E:(a>b>0)的長(zhǎng)軸,過(guò)坐標(biāo)原點(diǎn)O且傾斜角為135°的直線交橢圓E于C,D兩點(diǎn),且D在x軸上的射影D'恰為橢圓E的長(zhǎng)半軸OB的中點(diǎn).
(1)求橢圓E的離心率;
(2)若AB=8,不過(guò)第四象限的直線l與橢圓E和以CD為直徑的圓均相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出關(guān)于的線性回歸方程,并在坐標(biāo)系中畫(huà)出回歸直線;
(3)試預(yù)測(cè)加工個(gè)零件需要多少時(shí)間?
參考公式:回歸直線,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有三點(diǎn),其中點(diǎn)在橢圓上,,,且.
(1)求橢圓的方程;
(2)若過(guò)橢圓的右焦點(diǎn)的直線傾斜角為,直線與橢圓相交于,求三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x, y, z, 用綜合指標(biāo)S =" x" + y + z評(píng)價(jià)該產(chǎn)品的等級(jí). 若S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機(jī)抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號(hào) | A1 | A2 | A3 | A4 | A5 |
質(zhì)量指標(biāo)(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產(chǎn)品編號(hào) | A6 | A7 | A8 | A9 | A10 |
質(zhì)量指標(biāo)(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機(jī)抽取兩件產(chǎn)品,
(1) 用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
(2) 設(shè)事件B為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4”, 求事件B發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com