(2012•南京二模)某單位設(shè)計(jì)一個(gè)展覽沙盤(pán),現(xiàn)欲在沙盤(pán)平面內(nèi),布設(shè)一個(gè)對(duì)角線在l上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長(zhǎng)的材料彎折而成,邊BA,AD用一根9米長(zhǎng)的材料彎折而成,要求∠A和∠C互補(bǔ),且AB=BC.
(1)設(shè)AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范圍;
(2)求四邊形ABCD面積的最大值.
分析:(1)在△ABD與△CBD中,分別利用余弦定理,即可確定f(x)的解析式,及x的取值范圍;
(2)四邊形ABCD的面積S=
1
2
(AB•AD+CB•CD)sinA=
(x2-4)(x2-14x+49)
,構(gòu)建函數(shù)g(x)=(x2-4)( x2-14x+49),x∈(2,5),求導(dǎo)函數(shù),即可求得四邊形ABCD面積的最大值.
解答:解:(1)設(shè)AB=x米,則BC=x米,CD=5-x米,AD=9-x米,
則有5-x>0,即x<5.
在△ABD中,由余弦定理得BD2=AB2+AD2-2AB•AD•cosA.
同理,在△CBD中,BD2=CB2+CD2-2CB•CD•cosC. …(3分)
因?yàn)椤螦和∠C互補(bǔ),所以AB2+AD2-2AB•AD•cosA=CB2+CD2-2CB•CD•cosC=CB2+CD2+2CB•CD•cosA. …(5分)
即x2+(9-x)2-2 x(9-x)cosA=x2+(5-x)2+2 x(5-x)cosA.
解得cosA=
2
x
,即f(x)=
2
x

由余弦的定義,有
2
x
<1,則x>2,
故x∈(2,5).     …(8分)
(2)四邊形ABCD的面積S=
1
2
(AB•AD+CB•CD)sinA=
1
2
[x(5-x)+x(9-x)]
1-cos2A
=
(x2-4)(x2-14x+49)
.…(11分)
記g(x)=(x2-4)(x2-14x+49),x∈(2,5).
由g′(x)=2x(x2-14x+49)+(x2-4)(2 x-14)=2(x-7)(2 x2-7 x-4)=0,
∴x=4或x=7或x=-
1
2

∵x∈(2,5),∴x=4.                    …(14分)
所以函數(shù)g(x)在區(qū)間(2,4)內(nèi)單調(diào)遞增,在區(qū)間(4,5)內(nèi)單調(diào)遞減.
因此g(x)的最大值為g(4)=12×9=108.
所以S的最大值為
108
=6
3

答:所求四邊形ABCD面積的最大值為6
3
m2.    …(16分)
點(diǎn)評(píng):本題考查函數(shù)解析式,考查余弦定理的運(yùn)用,考查四邊形面積的計(jì)算,考查利用導(dǎo)數(shù)求函數(shù)的最值,正確表示四邊形的面積是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南京二模)下列四個(gè)命題
①“?x∈R,x2-x+1≤1”的否定;
②“若x2+x-6≥0,則x>2”的否命題;
③在△ABC中,“A>30°“sinA>
12
”的充分不必要條件;
④“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈z)”.
其中真命題的序號(hào)是
.(把真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南京二模)設(shè)向量
a
=(2,sinθ),
b
=(1,cosθ),θ為銳角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南京二模)已知
a+3ii
=b-i
,其中a,b∈R,i為虛數(shù)單位,則a+b=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南京二模)在面積為2的△ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),點(diǎn)P在直線EF上,則
PC
PB
+
BC
2
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南京二模)一塊邊長(zhǎng)為10cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形作側(cè)面,以它們的公共頂點(diǎn)p為頂點(diǎn),加工成一個(gè)如圖所示的正四棱錐形容器.當(dāng)x=6cm時(shí),該容器的容積為
48
48
cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案