20.在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC繞直線BC旋轉一周,則所形成的幾何體的體積是16π,若使△ABC繞直線AB旋轉一周,則所形成的幾何體的側面展開圖面積是15π.

分析 使△ABC繞直線BC旋轉一周,則所形成的幾何體是一個底面半徑為4,高為3的一個圓錐,代入圓錐體積公式,可得幾何體的體積;△ABC繞直線AB旋轉一周,得到一個底面半徑為3,高為4的一個圓錐,可得側面展開圖面積.

解答 解:將△ABC繞直線BC旋轉一周,
得到一個底面半徑為4,高為3的一個圓錐,
故所形成的幾何體的體積V=$\frac{1}{3}$×π×42×3=16π.
∵△ABC中,AB=4,BC=3,∠ABC=90°,
∴AC=5,
△ABC繞直線AB旋轉一周,得到一個底面半徑為3,高為4的一個圓錐,側面展開圖面積是π•3•5=15π.
故答案為16π,15π.

點評 本題考查的知識點是旋轉體,其中分析出旋轉得到的幾何體形狀及底面半徑,高等幾何量是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.設等差數(shù)列{an}滿足a3=5,a10=-9.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}}$),x∈R
(1)列表并畫出函數(shù)f(x)在長度為一個周期的閉區(qū)間上的簡圖;
(2)求f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.觀察下列等式:
$\begin{array}{l}{1^3}=1\\{1^3}+{2^3}=9\\{1^3}+{2^3}+{3^3}=36\\{1^3}+{2^3}+{3^3}+{4^3}=100\\…\end{array}$
照此規(guī)律,第n個等式可為:13+23+33+…+n3==[$\frac{n(n+1)}{2}$]2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=$\sqrt{2x+1}$的定義域為( 。
A.$(-\frac{1}{2},+∞)$B.$[{-\frac{1}{2},+∞})$C.$({-∞,\frac{1}{2}}]$D.$({-∞,-\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和Sn=3an+1.
(Ⅰ)求an;
(Ⅱ)判斷{an}是遞增還是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x3+x+1,則當x<0時,f(x)=x3+x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知x,y均為正數(shù),θ∈(${\frac{π}{4}$,$\frac{π}{2}}$),且滿足$\frac{cosθ}{x}$=$\frac{sinθ}{y}$,$\frac{{{{sin}^2}θ}}{x^2}$+$\frac{{{{cos}^2}θ}}{y^2}$=$\frac{10}{{3({x^2}+{y^2})}}$,則$\frac{{(x+y{)^2}}}{{{x^2}+{y^2}}}$的值為$\frac{{1+\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=$\root{3}{x-1}$+log2(x2-1)的定義域為( 。
A.(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪[1,+∞)D.(-1,1)

查看答案和解析>>

同步練習冊答案