20.已知數(shù)列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(Ⅰ)證明數(shù){an-2n}是等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an-3n,求bn的前n項(xiàng)和Tn

分析 (Ⅰ)由已知的等式利用等差數(shù)列的定義容易證明數(shù){an-2n}是等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)由bn=an-3n,得到bn的通項(xiàng)公式,進(jìn)一步求前n項(xiàng)和Tn

解答 (Ⅰ)證明:因?yàn)閍1=4,an=an-1+2n-1+3(n≥2,n∈N*).
所以(an-2n)-(an-1-2n-1)=3(n≥2,n∈N*).
所以{an-2n}是等差數(shù)列;a1-21=2,所以
an-2n=3n-1,所以{an}的通項(xiàng)公式an=2n+3n-1;
(Ⅱ)設(shè)bn=an-3n=2n-1,所以{bn}的前n項(xiàng)和Tn=$\frac{2(1-{2}^{n})}{1-2}-n={2}^{n+1}-n-2$.

點(diǎn)評(píng) 本題考查了利用定義證明數(shù)列為等差數(shù)列,從而間接求出{an}的通項(xiàng)公式,并且利用了分組求和;屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-2=-4,Sm=0,Sm+2=12,則第m項(xiàng)am=( 。
A.0B.1C.3D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為4,離心率為$\frac{1}{2}$,F(xiàn)1,F(xiàn)2分別為其左右焦點(diǎn).
(Ⅰ)求橢圓C1的方程;
(Ⅱ)在拋物線C:y2=4x上有兩點(diǎn)M,N,橢圓C1上有兩點(diǎn)P,Q,滿足$\overrightarrow{M{F}_{2}}$與$\overrightarrow{N{F}_{2}}$共線,$\overrightarrow{P{F}_{2}}$與$\overrightarrow{Q{F}_{2}}$共線,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{M{F}_{2}}$=0,直線MN的斜率為k(k≠0),求四邊形PMQN面積(用k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(理)宜黃高速公路連接宜昌、武漢、黃石三市,全長約350公里,是湖北省大三角經(jīng)濟(jì)主骨架的干線公路之一.若某汽車從進(jìn)入該高速公路后以不低于60千米/時(shí)且不高于120千米/時(shí)的速度勻速行駛,已知該汽車每小時(shí)的運(yùn)輸成本由固定部分和可變部分組成,固定部分為200元,可變部分與速度v(千米/時(shí))的平方成正比(比例系數(shù)記為k).當(dāng)汽車以最快速度行駛時(shí),每小時(shí)的運(yùn)輸成本為488元.若使汽車的全程運(yùn)輸成本最低,其速度為100千米/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=(1+i)2(2+i)的虛部是(  )
A.-2iB.-2C.4iD.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,A,B,C所對(duì)的邊分別是a,b,c,A=$\frac{2π}{3}$,且bcosC=3ccosB,則$\frac{c}$的值為( 。
A.$\frac{\sqrt{13}-1}{2}$B.$\frac{1+\sqrt{13}}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}滿足a1=4,a4+a6=16,則它的前10項(xiàng)和S10=(  )
A.138B.85C.23D.135

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各式正確的是( 。
(1)($\frac{cosx}{x}$)′=$\frac{-sinx}{{x}^{2}}$ 
(2)[(x2+x+1)ex]′=(2x+1)ex
(3)($\frac{2x}{{x}^{2}+1}$)′=$\frac{2-2{x}^{2}}{({x}^{2}+1)^{2}}$
(4)(e3x+1)′=3e3x+1
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x∈Z,集合A是奇數(shù)集,集合B是偶數(shù)集,命題P:?x∈A,2x∈B,則命題P的否定是( 。
A.?x∈A,2x∈BB.?x∉A,2x∉BC.?x∈A,2x∉BD.?x∉A,2x∉B

查看答案和解析>>

同步練習(xí)冊(cè)答案