分析 根據(jù)圓的標準方程得到圓心坐標和半徑,利用三角形面積的最大值,確定直線的位置,利用直線和方程的位置關系即可得到結論.
解答 解:圓C:(x-m)2+(y-2)2=40,圓心C(m,2),半徑r=2$\sqrt{10}$,
S△ABC=$\frac{1}{2}$r2sin∠ACB=20sin∠ACB,
∴當∠ACB=90時S取最大值20,
此時△ABC為等腰直角三角形,AB=$\sqrt{2}$r=4$\sqrt{5}$,
則C到AB距離=2$\sqrt{5}$,
∴2$\sqrt{5}$≤PC<2$\sqrt{10}$,即2$\sqrt{5}$≤$\sqrt{(m-3)^{2}+{2}^{2}}$<2$\sqrt{10}$,
∴20≤(m-3)2+4<40,即16≤(m-3)2<36,
∵圓C:(x-m)2+(y-2)2=40內,
∴|OP|=$\sqrt{(3-m)^{2}+{2}^{2}}$$<2\sqrt{10}$,即(m-3)2<36,
∴16≤(m-3)2<36,
∴-3<m≤-1或7≤m<9,
故答案為:-3<m≤-1或7≤m<9.
點評 本題主要考查直線和圓的位置關系的應用,利用圓的標準方程求出圓心坐標和半徑是解決本題的關鍵.綜合性較強,難度較大.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1<x<2} | B. | {x|x<-3,或1<x<2} | C. | {x|x<-3,或0<x<2} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 橫坐標向右平行移動$\frac{π}{5}$個單位,縱坐標不變 | |
B. | 橫坐標向左平行移動$\frac{π}{5}$個單位,縱坐標不變 | |
C. | 橫坐標伸長到原來的2倍,縱坐標不變 | |
D. | 橫坐標縮短到原來的$\frac{1}{2}$倍,縱坐標不變 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | B. | (lgx)′=$\frac{1}{xln10}$ | C. | (lnx)′=x | D. | (x2cosx)′=-2xsinx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com