6.設(shè)復(fù)數(shù)z=$\frac{2-i}{1+i}$(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

分析 直接利用復(fù)數(shù)的模的運(yùn)算法則化簡求解即可.

解答 解:復(fù)數(shù)z=$\frac{2-i}{1+i}$(i為虛數(shù)單位),則|z|=$\frac{|2-i|}{|1+i|}$=$\frac{\sqrt{5}}{\sqrt{2}}$=$\frac{\sqrt{10}}{2}$.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)的模的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正實(shí)數(shù)x,y,z滿足0≤log2x-log${\;}_{\sqrt{2}}$y+log2z≤1,且x+y≤2z,則$\frac{x-y}{z}$的取值范圍為[-$\frac{1}{4}$,$\frac{5-\sqrt{17}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給定集合An={1,2,3,…,n},n∈N*.若f是An→An的映射且滿足:
①任取i,j∈An,若i≠j,則f(i)≠f(j);
②任取m∈An,若m≥2,則有m∈{f(1),f(2),…,f(m)}.
則稱映射f為An→An的一個(gè)“優(yōu)映射”.
例如:用表1表示的映射f:A3→A3是一個(gè)“優(yōu)映射”.
表一
i123
F(i)231
表2
i1234
F(i)3
(1)若f:A4→A4是一個(gè)“優(yōu)映射”,請把表2補(bǔ)充完整(只需填出一個(gè)滿足條件的映射);
(2)若f:A2015→A2015是“優(yōu)映射”,且f(1004)=1,則f(1000)+f(1017)的最大值為2021.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}是首項(xiàng)和公差相等的等差數(shù)列,其前n項(xiàng)和為Sn,且S10=55.
(Ⅰ)求an和Sn
(Ⅱ)設(shè)${b_n}=\frac{1}{S_n}$,數(shù)列{bn}的前項(xiàng)和Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2016x+log2016($\sqrt{{x^2}+1$+x)-2016-x+2,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為( 。
A.(-$\frac{1}{4}$,+∞)B.(-∞,-$\frac{1}{4}$)C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an},滿足an+1>an,a1+a4=9,a2•a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{(2n-1)an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,是某鐵路客運(yùn)部門設(shè)計(jì)的甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用c(單位:元)與行李重量w(單位:千克)之間的流程圖.假定某旅客的托運(yùn)費(fèi)為10元,則該旅客托運(yùn)的行李重量為20千克.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}{y≤x+\frac{9}{2}}\\{x+2y≥6}\\{y≥3x-a(a∈z)}\end{array}\right.$,若z=4x-y的最大值為$\frac{33}{4}$,則a的值為( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC的三邊長AC=6,BC=8,AB=10,P為AB邊上任意一點(diǎn),則$\overrightarrow{CP}$•($\overrightarrow{BA}-\overrightarrow{BC}$)的最大值為( 。
A.0B.36C.48D.60

查看答案和解析>>

同步練習(xí)冊答案