A. | 0 | B. | 36 | C. | 48 | D. | 60 |
分析 根據(jù)條件容易判斷出△ABC為Rt△,且∠ACB=90°,可過P作AC的垂線PD,垂足為D,從而可畫出圖形,而$\overrightarrow{BA}-\overrightarrow{BC}=\overrightarrow{CA}$,從而可得出$\overrightarrow{CP}•(\overrightarrow{BA}-\overrightarrow{BC})=|\overrightarrow{CA}||\overrightarrow{CD}|$,顯然當D和A重合時$\overrightarrow{CP}•(\overrightarrow{BA}-\overrightarrow{BC})$取最大值,并可求出該最大值.
解答 解:∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,即△ABC為直角三角形,∠ACB=90°;
如圖所示,過P作PD⊥AC,垂足為D,則:
$\overrightarrow{CP}•(\overrightarrow{BA}-\overrightarrow{BC})$=$\overrightarrow{CP}•\overrightarrow{CA}$
=$|\overrightarrow{CP}||\overrightarrow{CA}|cos∠ACP$
=$|\overrightarrow{CA}||\overrightarrow{CP}|cos∠ACP$
=$|\overrightarrow{CA}||\overrightarrow{CD}|$;
∴P和A重合時,D與A重合,此時$|\overrightarrow{CD}|$取最大值$|\overrightarrow{CA}|$;
∴$\overrightarrow{CP}•(\overrightarrow{BA}-\overrightarrow{BC})$的最大值為$|\overrightarrow{CA}{|}^{2}=36$.
故選B.
點評 考查直角三角形邊的關系,以及向量減法的幾何意義,向量數(shù)量積的計算公式,三角函數(shù)的定義,以及數(shù)形結合解題的方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,0) | B. | (-∞,-2) | C. | (-8,0) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com