(本小題滿分10分)
在直角坐標系中,直線為參數(shù)),在極坐標系中(以原點為極點,以軸正半軸為極軸),圓C的方程:
(1)求圓C的直角坐標方程;
(2)設圓C與直線交于,兩點,點的坐標,求

(1);(2)。

解析試題分析:(1)……………… … …… …… … ……… ……  ………..4分
(2)把代入中,得到:……. . 6分
…………… …… …… …… …… … ……… … ………..10分
考點:極坐標方程與直角坐標方程的互化;直線與圓的綜合應用。
點評:熟記極坐標方程和直角坐標方程的互化公式,并能靈活應用。主要極坐標系與直角坐標系的區(qū)別和聯(lián)系,屬于基礎題型。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知點是圓上的點
(1)求的取值范圍.
(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,其中左焦點. 
(Ⅰ)求出橢圓C的方程;
(Ⅱ) 若直線與曲線C交于不同的A、B兩點,且線段AB的中點M在圓上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C與兩坐標軸都相切,圓心C到直線的距離等于.
(1)求圓C的方程.
(2)若直線與圓C相切,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求經過兩圓的交點,且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,
與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設直線y = –2x+4與圓C交于點M, N,若,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知圓

(1)直線與圓相交于兩點,求;
(2)如圖,設是圓上的兩個動點,點關于原點的對稱點為,點關于軸的對稱點為,如果直線、軸分別交于,問是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C過點(1,0),且圓心在軸的正半軸上,直線l:y=x-1被該圓所截得的弦長為2,求圓C的標準方程.

查看答案和解析>>

同步練習冊答案