15.下列有關(guān)命題的說(shuō)法正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:$?{x_0}∈R,x_0^2-{x_0}-1>0$.則¬p:?x∈R,x2-x-1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若$α=\frac{π}{3}$,則$cosα=\frac{1}{2}$”的否命題是“若$α≠\frac{π}{3}$,則$cosα≠\frac{1}{2}$”

分析 A.f(0)=0推不出函數(shù)f(x)是奇函數(shù),例如f(x)=x2;函數(shù)f(x)是奇函數(shù),例如f(x)=$\frac{1}{x}$,則f(0)無(wú)意義,即可判斷出結(jié)論;
B.利用非命題的定義即可判斷出真假;
C.若p∧q為假命題,則p,q至少一個(gè)為假命題,即可判斷出真假;
D.利用否命題的定義即可判斷出真假.

解答 解:A.f(0)=0推不出函數(shù)f(x)是奇函數(shù),例如f(x)=x2;函數(shù)f(x)是奇函數(shù),例如f(x)=$\frac{1}{x}$,則f(0)無(wú)意義,因此.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的既不充分也不必要條件,不正確;
B.若p:$?{x_0}∈R,x_0^2-{x_0}-1>0$.則¬p:?x∈R,x2-x-1≤0,因此不正確;
C.若p∧q為假命題,則p,q至少一個(gè)為假命題,因此不正確;
D.“若$α=\frac{π}{3}$,則$cosα=\frac{1}{2}$”的否命題是“若$α≠\frac{π}{3}$,則$cosα≠\frac{1}{2}$”,正確.
故選:D.

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{{t•{3^x}-1}}{{{3^x}+1}}({t∈R})$是奇函數(shù).
(1)求t的值;
(2)求f(x)的反函數(shù)f-1(x);
(3)對(duì)于任意的0<m<2,解不等式:${f^{-1}}(x)>{log_3}\frac{1+x}{m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={-1,0,1,},B={x|(x-1)2<1},則A∩B=( 。
A.{-1,0,1}B.{0}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知sinα+cosα=-$\sqrt{2}$,則tanα=( 。
A.1B.-2+$\sqrt{3}$C.-2-$\sqrt{3}$D.2±$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列有關(guān)命題的說(shuō)法錯(cuò)誤的是( 。
A.函數(shù)f(x)=sinxcosx的最小正周期為π
B.函數(shù)$f(x)=lnx+\frac{1}{2}x-2$在區(qū)間(2,3)內(nèi)有零點(diǎn)
C.已知函數(shù)$f(x)={log_a}({x^2}-2x+2)$,若$f(\frac{1}{2})>0$,則0<a<1
D.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(-∞,1)內(nèi)取值的概率為0.1,則ξ在(2,3)內(nèi)取值的概率為0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合P={x|1<x≤2},Q={x|x2-2x≥0},若U=R,則P∪∁UQ=( 。
A.[0,2]B.(0,2]C.(1,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=2ex-(x-a)2+3,g(x)=f′(x).
(Ⅰ)當(dāng)a為何值時(shí),x軸是曲線y=g(x)的切線?
(Ⅱ)當(dāng)a<-1時(shí),證明:g(x)在[0,+∞)有唯一零點(diǎn);
(Ⅲ)當(dāng)x≥0時(shí),f(x)≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某班倡議假期每位學(xué)生至少閱讀一本名著,為了解學(xué)生的閱讀情況,對(duì)該班所有學(xué)生進(jìn)行了調(diào)查.調(diào)查結(jié)果如表:
閱讀名著的本數(shù)12345
男生人數(shù)31213
女生人數(shù)13312
(Ⅰ)試根據(jù)上述數(shù)據(jù),求這個(gè)班級(jí)女生閱讀名著的平均本數(shù);
(Ⅱ)若從閱讀5本名著的學(xué)生中任選2人交流讀書心得,求選到男生和女生各1人的概率;
(Ⅲ)試判斷該班男生閱讀名著本數(shù)的方差${s_1}^2$與女生閱讀名著本數(shù)的方差${s_2}^2$的大小
(只需寫出結(jié)論).(注:方差${s^2}=\frac{1}{n}[{({x_1}-\bar x)^2}+{({x_2}-\bar x)^2}+…+{({x_n}-\bar x)^2}]$,其中$\overline x$為x1x2,…xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知(a-bx)5的展開式中第4項(xiàng)的系數(shù)與含x4的系數(shù)分別為-80與80,則(a-bx)5展開式所有項(xiàng)系數(shù)之和為( 。
A.-1B.1C.32D.64

查看答案和解析>>

同步練習(xí)冊(cè)答案