18.雙曲線x2-$\frac{{y}^{2}}{4}$=1的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

分析 根據(jù)雙曲線的方程為標(biāo)準(zhǔn)形式,求出a、b、c 的值,即得離心率的值.

解答 解:雙曲線x2-$\frac{{y}^{2}}{4}$=1,a=1,b=2,
∴c=$\sqrt{5}$,
∴雙曲線x2-$\frac{{y}^{2}}{4}$=1的離心率為e=$\sqrt{5}$,
故選C.

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,把雙曲線的方程化為標(biāo)準(zhǔn)形式是解題的突破口.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:點M(x,y)滿足xcosθ+ysinθ=1,θ∈(0,2π],命題q:點N(x,y)滿足x2+y2=m2(m>0),若p是q的必要不充分條件,那么實數(shù)m的取值范圍是m≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個生物研究性學(xué)習(xí)小組,為了研究平均氣溫與一天內(nèi)某豆類胚芽生長之間的關(guān)系,他們分別記錄了4月6日至4月11日的平均氣溫x(℃)與該豆類胚芽一天生長的長度y(mm),得到如下數(shù)據(jù):
日期4月6日4月7日4月8日4月9日4月10日4月11日
平均氣溫x(℃)1011131286
一天生長的長度y(mm)222529261612
該小組的研究方案是:先從這六組數(shù)據(jù)中選取6日和11日的兩組數(shù)據(jù)作為檢驗數(shù)據(jù),用剩下的4組數(shù)據(jù)即:7日至10日的四組數(shù)據(jù)求出線性回歸方程.
(1)請按研究方案求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)用6日和11日的兩組數(shù)據(jù)作為檢驗數(shù)據(jù),并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計數(shù)據(jù)與所選的檢驗數(shù)據(jù)的誤差不超過1mm,則認(rèn)為該方程是理想的)
參考公式:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a=${∫}_{0}^{{e}^{2}-1}$$\frac{1}{x+1}$dx,則二項式(x2-$\frac{a}{x}$)9的展開式中常數(shù)項為5376.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.九江氣象臺統(tǒng)計,5月1日潯陽區(qū)下雨的概率為$\frac{4}{15}$,刮風(fēng)的概率為$\frac{2}{15}$,既刮風(fēng)又下雨的概率為$\frac{1}{10}$,設(shè)A為下雨,B為刮風(fēng),那么P(A|B)=( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.10101(2)轉(zhuǎn)化為十進(jìn)制數(shù)是21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{2}$mx2+1,g(x)=2lnx-(2m+1)x-1(m∈R),且h(x)=f(x)+g(x)
(1)若函數(shù)h(x)在(1,f(1))和(3,f(3))處的切線互相平行,求實數(shù)m的值;
(2)求h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合A={x|x2-3x+2=0},B={0,1},則A∪B=( 。
A.{1}B.{0,1,2}C.(1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=-4x.
(Ⅰ)已知點M在拋物線C上,它與焦點的距離等于5,求點M的坐標(biāo);
(Ⅱ)直線l過定點P(1,2),斜率為k,當(dāng)k為何值時,直線l與拋物線:只有一個公共點;兩個公共點;沒有公共點.

查看答案和解析>>

同步練習(xí)冊答案