已知函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的大小關(guān)系是( 。
分析:由“當(dāng)x∈(-∞,0)時(shí)不等式f(x)+xf′(x)<0成立”知xf(x)是減函數(shù),要得到a,b,c的大小關(guān)系,只要比較30.3,
log
3
π
,
log
1
9
3
的大小即可.
解答:解:∵當(dāng)x∈(-∞,0)時(shí)不等式f(x)+xf′(x)<0成立
即:(xf(x))′<0,
∴xf(x)在 (-∞,0)上是減函數(shù).
又∵函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),
∴函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對(duì)稱(chēng),
∴函數(shù)y=f(x)是定義在R上的奇函數(shù)
∴xf(x)是定義在R上的偶函數(shù)
∴xf(x)在 (0,+∞)上是增函數(shù).
又∵30.3>1>
log
3
π
>0>
log
1
9
3
=-2,
2=-
log
1
9
3
>30.3>1>
log
3
π
>0.
∴(-
log
1
9
3
)•f(-
log
1
9
3
)>30.3•f(30.3)>(
log
3
π
)•f(
log
3
π

即(
log
1
9
3
)•f(
log
1
9
3
)>30.3•f(30.3)>(
log
3
π
)•f(
log
3
π

即:c>a>b
故選C.
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性以及函數(shù)的單調(diào)性,同時(shí)考查了分析問(wèn)題的能力和運(yùn)算求解的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過(guò)點(diǎn)(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對(duì)稱(chēng)圖形一定過(guò)點(diǎn)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時(shí),f(x)=x(1-x),那么當(dāng)x>0時(shí),f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時(shí),f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿(mǎn)足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案