【題目】對于函數(shù)的定義域為,如果存在區(qū)間,同時滿足下列條件:
①在上是單調(diào)函數(shù);
②當(dāng)的定義域為時,值域也是,則稱區(qū)間是函數(shù)的“區(qū)間”.對于函數(shù).
(1)若,求函數(shù)在處的切線方程;
(2)若函數(shù)在上存在“區(qū)間”,求的取值范圍.
【答案】(1)(2)
【解析】
(1) 若,則,,求出切線斜率,代入點斜式方程,可得答案;
(2) 結(jié)合函數(shù)存在“區(qū)間”的定義,分類討論滿足條件的a的取值范圍,綜合討論結(jié)果,可得答案.
解:(1)時,,,
則,
∴函數(shù)在處的切線方程為,即;
(2)時,,在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減
設(shè)函數(shù)在上存在“區(qū)間”是,
(i)當(dāng)時,由題意可知,即,
轉(zhuǎn)化為與在有兩個交點,
設(shè),,
當(dāng)時,,為增函數(shù),
當(dāng)時,,為減函數(shù),
所以有,
解得;
(ii)當(dāng)時,由題意可知,,兩式相減得,,此式不可能成立,所以此時不存在“區(qū)間”.
綜上所述,函數(shù)在上存在“區(qū)間”的的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐中,平面,,
(1)證明: ;
(2)過點作平行于平面的截面,與直線分別交于點,求夾在該截面與平面之間的幾何體體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為的等邊三角形內(nèi)任一點到三邊距離之和為定值,則這個定值為;推廣到空間,棱長為的正四面體內(nèi)任一點到各面距離之和為___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今有6個人組成的旅游團(tuán),包括4個大人,2個小孩,去廬山旅游,準(zhǔn)備同時乘纜車觀光,現(xiàn)有三輛不同的纜車可供選擇,每輛纜車最多可乘3人,為了安全起見,小孩乘纜車必須要大人陪同,則不同的乘車方式有_____種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個人所得稅法》規(guī)定,公民月收入總額(工資、薪金等)不超過免征額的部分不必納稅,超過免征額的部分為全月應(yīng)納稅所得額,個人所得稅稅款按稅率表分段累計計算.為了給公民合理減負(fù),穩(wěn)步提升公民的收入水平,自2018年10月1日起,個人所得稅免征額和稅率進(jìn)行了調(diào)整,調(diào)整前后的個人所得稅稅率表如下:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率 | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過1500元的部分 | 1 | 不超過3000元的部分 | ||
2 | 超過1500元至4500元的部分 | 2 | 超過3000元至12000元的部分 | ||
3 | 超過4500元至9000元的部分 | 3 | 超過12000元至25000元的部分 | ||
… | … | … | … | … | … |
(1)已知小李2018年9月份上交的稅費是295元,10月份工資、薪金等稅前收入與9月份相同,請幫小李計算一下稅率調(diào)整后小李10月份的稅后實際收入是多少?
(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100位不同層次員工的稅前收入,并制成下面的頻率分布直方圖.
(i)請根據(jù)頻率分布直方圖估計該公司員工稅前收入的中位數(shù);
(ii)同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,按調(diào)整后稅率表,試估計小李所在的公司員工該月平均納稅多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)射線與圓C的交點為與直線的交點為,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù).
(1)若,求的解析式;
(2)當(dāng),時,對任意的,恒成立,求實數(shù)的取值范圍;
(3)設(shè)函數(shù)在兩個不同零點,將關(guān)于的不等式的解集記為.已知函數(shù)的最小值為,且函數(shù)在上不存在最小值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是國家統(tǒng)計局公布的2013-2018年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是( )
A.2014年我國入境游客萬人次最少
B.后4年我國入境游客萬人次呈逐漸增加趨勢
C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次
D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com