【題目】如圖是國(guó)家統(tǒng)計(jì)局公布的2013-2018年入境游客(單位:萬(wàn)人次)的變化情況,則下列結(jié)論錯(cuò)誤的是(

A.2014年我國(guó)入境游客萬(wàn)人次最少

B.4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì)

C.6年我國(guó)入境游客萬(wàn)人次的中位數(shù)大于13340萬(wàn)人次

D.3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差小于后3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差

【答案】D

【解析】

ABD可通過(guò)統(tǒng)計(jì)圖直接分析得出結(jié)論,C可通過(guò)計(jì)算中位數(shù)判斷選項(xiàng)是否正確.

A.由統(tǒng)計(jì)圖可知:2014年入境游客萬(wàn)人次最少,故正確;

B.由統(tǒng)計(jì)圖可知:后4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì),故正確;

C.入境游客萬(wàn)人次的中位數(shù)應(yīng)為的平均數(shù),大于萬(wàn)次,故正確;

D.由統(tǒng)計(jì)圖可知:前年的入境游客萬(wàn)人次相比于后年的波動(dòng)更大,所以對(duì)應(yīng)的方差更大,故錯(cuò)誤.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某搜索引擎廣告按照付費(fèi)價(jià)格對(duì)搜索結(jié)果進(jìn)行排名,點(diǎn)擊一次付費(fèi)價(jià)格排名越靠前,被點(diǎn)擊的次數(shù)也可能會(huì)提高,已知某關(guān)鍵詞被甲、乙等多個(gè)公司競(jìng)爭(zhēng),其中甲、乙付費(fèi)情況與每小時(shí)點(diǎn)擊量結(jié)果繪制成如下的折線圖.

1)若甲公司計(jì)劃從這10次競(jìng)價(jià)中隨機(jī)抽取3次競(jìng)價(jià)進(jìn)行調(diào)研,其中每小時(shí)點(diǎn)擊次數(shù)超過(guò)7次的競(jìng)價(jià)抽取次數(shù)記為,求的分布列與數(shù)學(xué)期望;

2)若把乙公司設(shè)置的每次點(diǎn)擊價(jià)格為x,每小時(shí)點(diǎn)擊次數(shù)為,則點(diǎn)近似在一條直線附近.試根據(jù)前5次價(jià)格與每小時(shí)點(diǎn)擊次數(shù)的關(guān)系,求y關(guān)于x的回歸直線.(附:回歸方程系數(shù)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)的定義域?yàn)?/span>,如果存在區(qū)間,同時(shí)滿足下列條件:

上是單調(diào)函數(shù);

②當(dāng)的定義域?yàn)?/span>時(shí),值域也是,則稱區(qū)間是函數(shù)的“區(qū)間”.對(duì)于函數(shù).

1)若,求函數(shù)處的切線方程;

2)若函數(shù)上存在“區(qū)間”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知底面為邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是(

①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長(zhǎng)度是;

②若,則與面所成角的正切值取值范圍是;

③若,則在該四棱柱六個(gè)面上的正投影長(zhǎng)度之和的最大值為.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下命題:(1)已知三個(gè)不同的平面,,,若,,則;(2)若直線與平面所成角都是,則這兩條直線平行;(3)若直線,與平面所成角都是,則這兩條直線不可能垂直;(4)設(shè)直線與平面相交但不垂直,則在平面內(nèi)有且只有一條直線與直線垂直.錯(cuò)誤的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線過(guò)點(diǎn),該拋物線的準(zhǔn)線與橢圓:相切,且橢圓的離心率為,點(diǎn)為橢圓的右焦點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),為平面上一定點(diǎn),且滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行優(yōu)惠促銷(xiāo)活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.

方案一:每滿100元減20元;

方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽取),所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)

紅球個(gè)數(shù)

3

2

1

0

實(shí)際付款

7

8

9

原價(jià)

1)該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;

2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的值;

2)證明函數(shù)存在唯一的極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,底面為菱形,.

1)證明:平面平面;

2)若,是等邊三角形,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案