【題目】在一個(gè)盒子中有3個(gè)球,藍(lán)球、紅球、綠球各1個(gè),從中隨機(jī)地取出一個(gè)球,觀察其顏色后放回,然后再隨機(jī)取出1個(gè)球.

1)用適當(dāng)?shù)姆?hào)表示試驗(yàn)的可能結(jié)果,寫出試驗(yàn)的樣本空間;

2)用集合表示第一次取出的是紅球"的事件;

3)用集合表示兩次取出的球顏色相同的事件.

【答案】1)見解析;(2)事件第一次取出的是紅球;(3)事件兩次取出的球顏色相同.

【解析】

1)分別用1.2.3表示取出的球的顏色為藍(lán)色,紅色,綠色,用有序數(shù)對(duì),然后一一列舉即可;

2)結(jié)合(1)即可得解;

3)結(jié)合(1)即可得解.

解:(1)分別用1.2.3表示取出的球的顏色為藍(lán)色,紅色,綠色,用有序數(shù)對(duì)表示試驗(yàn)的可能結(jié)果,則試驗(yàn)的樣本空間可表示為.

2)事件第一次取出的是紅球.

3)事件兩次取出的球顏色相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上頂點(diǎn)為點(diǎn),右焦點(diǎn)為.延長(zhǎng)交橢圓于點(diǎn),且滿足.

(1)試求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)作與軸不重合的直線和橢圓交于兩點(diǎn),設(shè)橢圓的左頂點(diǎn)為點(diǎn),且直線分別與直線交于兩點(diǎn),記直線的斜率分別為,則之積是否為定值?若是,求出該定值;若不是,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在定義域內(nèi)某個(gè)區(qū)間,使得上的值域也是,則稱函數(shù)在定義域上封閉.如果函數(shù)上封閉,那么實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班共有20名男生,在一次體驗(yàn)中這20名男生被平均分成兩個(gè)小組,第一組和第二組男生的身高(單位: )的莖葉圖如下:

1)根據(jù)莖葉圖,分別寫出兩組學(xué)生身高的中位數(shù);

2)從該班身高超過7名男生中隨機(jī)選出2名男生參加;@球隊(duì)集訓(xùn),求這2名男生至少有1人來自第二組的概率;

3)在兩組身高位于(單位: )的男生中各隨機(jī)選出2人,設(shè)這4人中身高位于(單位: )的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C=1a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線sin·x+cos·yl=0相切(為常數(shù)).

1)求橢圓C的方程;

2)若過點(diǎn)M3,0)的直線與橢圓C相交TA,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有教職工130人,對(duì)他們進(jìn)行年齡狀況和受教育程度的調(diào)查,其結(jié)果如下:

本科

研究生

合計(jì)

35歲以下

50

35

85

35-50

20

13

33

50歲以上

10

2

12

從這130名教職工中隨機(jī)地抽取一人,求下列事件的概率;

1)具有本科學(xué)歷;

235歲及以上;

335歲以下且具有研究生學(xué)歷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程,并預(yù)測(cè)該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(2)若從表中1月份和4月份的違章駕駛員中,采用分層抽樣方法抽取一個(gè)容量為7的樣本,再從這7人中任選2人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大數(shù)據(jù)時(shí)代的到來,人工智能的應(yīng)用已在各個(gè)領(lǐng)域內(nèi)得到了認(rèn)可與大力推廣,人工智能AI教育也相應(yīng)在北京、上海等大城市普及、某教育總公司開發(fā)了一款專門針對(duì)于中小學(xué)語數(shù)英教學(xué)的應(yīng)用程序,據(jù)研究發(fā)現(xiàn),題庫總量(單位:萬,)與成本(單位:萬元)的關(guān)系由兩部分構(gòu)成:

①固定成本:總計(jì)萬元;

②浮動(dòng)成本:萬元.

(1)該公司題庫總量為多少時(shí),可使得每題的平均成本費(fèi)用最低?最低費(fèi)用為多少?

(2)公司將該軟件投放市場(chǎng)尋求加盟合作伙伴,加盟費(fèi)為萬元,加盟人數(shù)與題庫量滿足一次關(guān)系,已知當(dāng)題庫量為萬時(shí),此時(shí)加盟人數(shù)為,公司總利潤(rùn)(單位:萬元)達(dá)到最大值.試求、的值.(注:總利潤(rùn)=加盟費(fèi)-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn)。

(1)求的取值范圍;

(2)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案