設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

(1)見解析(2)=1.(3)直線l與圓C相切

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率,長軸的左右端點分別為,.
(1)求橢圓的方程;
(2)設(shè)動直線與曲線有且只有一個公共點,且與直線相交于點.
求證:以為直徑的圓過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知焦點在軸上的橢圓經(jīng)過點,直線
交橢圓于不同的兩點.

(1)求該橢圓的標(biāo)準方程;
(2)求實數(shù)的取值范圍;
(3)是否存在實數(shù),使△是以為直角的直角三角形,若存在,求出的值,若不存,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點,,在第三象限,線段的中點在直線上.

(1)求橢圓的標(biāo)準方程;
(2)求點C的坐標(biāo);
(3)設(shè)動點在橢圓上(異于點,,)且直線PB,PC分別交直線OA,兩點,證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.

(1)求橢圓C的標(biāo)準方程;
(2)若θ=90°,,求實數(shù)m;
(3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知橢圓=1的左、右頂點為A、B,右焦點為F.設(shè)過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設(shè)動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設(shè)x1=2,x2,求點T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線D的頂點是橢圓C:=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)過橢圓C右頂點A的直線l交拋物線D于M、N兩點.
①若直線l的斜率為1,求MN的長;
②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直線l1和l2相交于點M,l1⊥l2,點N∈l1,以A、B為端點的曲線段C上任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B.已知點A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊答案