設(shè)平面區(qū)域D是由雙曲線數(shù)學(xué)公式的兩條漸近線和直線6x-y-8=0所圍成三角形的邊界及內(nèi)部.當(dāng)(x,y)∈D時,x2+y2+2x的最大值為


  1. A.
    24
  2. B.
    25
  3. C.
    4
  4. D.
    7
A
分析:由題意平面區(qū)域D是由雙曲線的兩條漸近線和直線6x-y-8=0所圍成三角形的邊界及內(nèi)部,所以先由題意找到平面區(qū)域D,對于x2+y2+2x=z?(x+1)2+y2=z+1此式可以看成圓心為頂點(diǎn)(-1,0),圓的半徑隨z的變化而變化同心圓系,畫出圖形求解即可.
解答:有平面區(qū)域D是由雙曲線的兩條漸近線和直線6x-y-8=0所圍成三角形的邊界及內(nèi)部,所以得到區(qū)域?yàn)椋?br />
由于目標(biāo)函數(shù)為:x2+y2+2x=z?(x+1)2+y2=z+1此式可以看成圓心為頂點(diǎn)(-1,0),圓的半徑隨z的變化而變化同心圓系,畫圖可知:當(dāng)此圓系過點(diǎn)(2,4)時,使得圓的半徑的平方最大,即zmax=(2+1)2+42-1=24.
故選A
點(diǎn)評:此題考查了雙曲線的漸進(jìn)性方程,線性規(guī)劃求最值時目標(biāo)函數(shù)的幾何含義及學(xué)生用圖的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第七次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部.當(dāng)時,的最大值為(    ).

A.12               B.10               C.8                D.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆云南省高三上期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當(dāng)時,的最大值為(    )

    A.8                B.0                C.-2               D.16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省、莊河高中高三上學(xué)期期末理科數(shù)學(xué) 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部.當(dāng)時,的最大值是                        

    A.24        B.25       C.4       D.7

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省高三下學(xué)期3月月考數(shù)學(xué)理卷 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當(dāng)時,的最大值為(   )

A.24                             B.25                                 C.4                                   D.7

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省高三下學(xué)期3月月考數(shù)學(xué)理卷 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當(dāng)時,的最大值為(   )

A.24                             B.25                                 C.4                                   D.7

 

查看答案和解析>>

同步練習(xí)冊答案