(05年天津卷)(12分)

如圖,在斜三棱柱中,,,側面與底面ABC所成的二面角為120,E、F分別是棱、的中點。

(Ⅰ)求與底面ABC所成的角;

(Ⅱ)證明EA∥平面;

(Ⅲ)求經(jīng)過、A、B、C四點的球的體積。

解析:(I)過作平面平面,垂足為。連接,并延長交于,連接,于是與底面所成的角。

因為,所以為的平分線

又因為,所以且為的中點

因此,由三垂線定理

因為,且,所以,于是為二面角的平面角,即

由于四邊形為平行四邊形,得

所以,與底面所成的角度為

(II) 證明:設的交點為,則點P為EG的中點,連結PF。

在平行四邊形中,因為F是的中點,所以

而EP平面,平面,所以平面

(III)解:連接。在△和△中,
 

又因為平面,所以是△的外心

設球心為,則必在上,且

在Rt△中,△

球的體積△

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據(jù)分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.

(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;

(2)設通過最后三關后,能被錄取的人數(shù)為,求隨機變量的期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A=, =

(1)求A的特征值、及對應的特征向量;  

(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年莆田四中一模理) (14分)

由函數(shù)確定數(shù)列,,若函數(shù)的反函數(shù) 能確定數(shù)列,則稱數(shù)列是數(shù)列的“反數(shù)列”。

(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項公式;

(2)對(1)中,不等式對任意的正整數(shù)恒成立,求實數(shù)的范圍;

(3)設,若數(shù)列的反數(shù)列為的公共項組成的數(shù)列為;求數(shù)列項和

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(05年遼寧卷)(12分)

已知函數(shù).設數(shù)列滿足,,數(shù)列滿足

,,

(Ⅰ)用數(shù)學歸納法證明;(Ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(05年湖北卷文)(12分)

設數(shù)列的前n項和為Sn=2n2,為等比數(shù)列,且

   (Ⅰ)求數(shù)列的通項公式;

   (Ⅱ)設,求數(shù)列的前n項和Tn.

查看答案和解析>>

同步練習冊答案