【題目】已知橢圓的離心率為,且過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若,為橢圓上不同的兩點(diǎn),且以為直徑的圓過坐標(biāo)原點(diǎn).是否存在定圓與動(dòng)直線相切?若存在,求出該圓的方程;若不存在,說明理由.

【答案】(1);(2)見解析

【解析】

1)根據(jù)離心率得到的值,將的坐標(biāo)代入橢圓方程,結(jié)合,求得的值,進(jìn)而求得橢圓標(biāo)準(zhǔn)方程.2)當(dāng)直線的傾斜角是時(shí),求得直線的方程,此時(shí)直線和圓相切. 當(dāng)直線的傾斜角不是時(shí),設(shè)出直線的的方程,聯(lián)立直線的方程和橢圓方程,消去,寫出韋達(dá)定理,利用列方程,利用點(diǎn)到直線的距離公式求得原點(diǎn)到直線的距離為定值,這個(gè)定值恰好是圓的半徑.由此證得結(jié)論成立.

(1)∵,∴.

,∴,則橢圓方程為:.

又橢圓過點(diǎn),∴,∴,則所求橢圓方程為:.

(2)當(dāng)直線的傾斜角是時(shí),直線的方程是:,

與定圓相切.

下證任意性,當(dāng)直線的傾斜角不是時(shí),

設(shè)直線,,

,

∵以為直徑的圓過坐標(biāo)原點(diǎn),∴.

,

,

圓心到直線的距離,

即直線與圓相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn)P2,1).

1)求橢圓C的方程,并求其離心率;

2)過點(diǎn)Px軸的垂線l,設(shè)點(diǎn)A為第四象限內(nèi)一點(diǎn)且在橢圓C上(點(diǎn)A不在直線l上),點(diǎn)A關(guān)于l的對稱點(diǎn)為A',直線A'PC交于另一點(diǎn)B.設(shè)O為原點(diǎn),判斷直線AB與直線OP的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)六邊形點(diǎn)陣,它的中心是1個(gè)點(diǎn)(第1層),第2層每邊有2個(gè)點(diǎn), 3層每邊有3個(gè)點(diǎn),,依此類推,若一個(gè)六邊形點(diǎn)陣共有217個(gè)點(diǎn),那么它的層數(shù)為(

A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究變量得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論

殘差平方和越小的模型,擬合的效果越好;

用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;

在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位

若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng),以上正確說法的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線x=﹣2上有一動(dòng)點(diǎn)Q,過點(diǎn)Q作直線l,垂直于y軸,動(dòng)點(diǎn)P在l1上,且滿足(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.

(1)求曲線C的方程;

(2)已知定點(diǎn)M(,0),N(,0),點(diǎn)A為曲線C上一點(diǎn),直線AM交曲線C于另一點(diǎn)B,且點(diǎn)A在線段MB上,直線AN交曲線C于另一點(diǎn)D,求△MBD的內(nèi)切圓半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí) 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:

x

2

5

8

9

11

y

12

10

8

8

7

1)求y關(guān)于x的回歸方程;

2)判定yx之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額;

附:①;.

②參考數(shù)據(jù)如下:

i

1

2

12

4

24

2

5

10

25

50

3

8

8

64

64

4

9

8

81

72

5

11

7

121

77

35

45

295

287

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),且設(shè)定點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案